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Résumé 
 
          On montre que les conditions quantiques initiales de Bohm pour un objet solitaire 
quantique peuvent être infiniment nombreuses en contradiction avec le modèle de Bohr pour 
l'atome d'hydrogène. 
 Le premier (et le dernier) modèle de Bohr pour l'atome d'hydrogène est très proche du 
modèle physique classique. En se basant sur les faits expérimentaux (observations 
spectroscopiques d'un ensemble) Bohr n'a  deviné qu'un seul  paire  de conditions initiales 
pour  l'atome d'hydrogène isolé. Cette approche  ne permet pas d'être trouvées les propriétés 
possibles d'une multitude d'atomes d'hydrogène (ensemble statistique). Сe modèle est 
incomplet et au lieu de le compléter, Bohr introduit dans la science des incertitudes et des 
probаbilités, que j'appelle “Illusions de Copenhague “.  
 Dans cet essai les champs de gravitation de toutes les particules (y compris le photon) 
sont  décomposés en ondes monochromatiques planes. La longueur d'onde de gravitation 
obtenue coïncide avec la longueur d'onde de L. de Broglie. Malgré son amplitude de 
gravitation très  petite cette onde peut “guider” les particules à cause de la loi de conservation 
de l'énergie. C`est très semblable au “potentiel quantique” de Bohm. Bohm imagine son 
potentiel quantique comme un porteur d'information, dont l'amplitude ne change pas avec  la 
distance  et qui se propage probablement avec une vitesse beaucoup  plus grande que la 
vitesse de la lumière.    
 Notre potentiel  de gravitation  explique l`influence du milieu sur le mouvement  des 
particules (diffraction, interférence), mais  en se déplassant  avec la vitesse des particules,  le 
paquet  de gravitation  ne permet pas l'existance  des nonlocalités et l`envoi des signaux plus 
rapides que la vitesse de la lumière. 
 Il est montré encore que l`onde de gravitation permet le calcul  de nombreuses  
proprités toutes nouvelles des systèmes quantiques. Pour la première fois ici sont calculés le 
temps de vie moyen d 'un ensemle statistique d`états exités et des nouvelles proprietés des 
рhotons “entremêlés” (corrélés). Des calculs pareils ne sont pas possibles pour la physique 
quantique contemporaine. 

Ces résultats (comme l'écrit Bohm) sont en déhors de la physique quantique 

contemporaine. Il est montré que nos nouveaux résultats  coïncident avec tous  les faits 

expérimentaux connus  

  
 Mots-clés: atome solitaire, temps de vie propre, conditions initiales, modèle 
classique, largeur de la raie du photon. 
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Summary 

It is shown that in Bohm’s interpretation of quantum mechanics the number of initial 

conditions of a single solitary quantum object must be infinitely large (contrary to Bohr’s model 

of the hydrogen atom). Bohr’s first (and last) model of hydrogen is consistent with the models of 

classical physics. Based on experimental facts (spectroscopic observation of an ensemble) Bohr 

guessed that only one pair of initial conditions corresponds to an individual hydrogen atom. This 

does not allow finding the possible properties of many hydrogen atoms (a statistical ensemble). 

Such model is not complete and instead of making it complete, Bohr introduces in science 

inherent uncertainties and probabilities, which I call “Copenhagen’s illusions”.  

In this “essay” the gravity fields of all particles (including photon) are expanded in terms 

of plane monochromatic waves. The obtained gravity wave-length coincides with the length of 

de Broglie’s wave. Despite of its very small amplitude, the gravity wave can guide the particle 

because of the energy conservation laws. This resembles the “quantum potential” of Bohm. He 

thinks the quantum potential as a guide of information, with amplitude that does not change with 

distance, and probably propagates with velocity many times faster than the light velocity. My 

gravity potential explains the influence of environment on the particle’s motion (diffraction, 

interference); and by moving together with the particle, the gravity packet does not allow 

existence of non-locality and possibility for sending signals faster than the speed of light.  

It is also shown that the gravity wave allows us to calculate many new properties of 

quantum systems. The mean lifetime of an ensemble of excited hydrogen levels (k), when 

transitions occur to any lower state (n). The new properties of entangled (correlated) photons are 

calculated here for the first time. All such calculations are not possible for contemporary 

Quantum Physics. These results (as written by Bohm) are “beyond” the contemporary quantum 

mechanics. It is shown that these new results coincide exactly with all known experimental 

results.  

 

Key words: solitary atom; “soliton-photon”; “own lifetime”; entangled photons; initial 

conditions; classical model; photon linewidth, soliton gravity potential. 
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FOREWORD 

“This work should not exist, because it contradicts the uncertainty principle and probabilities inherent 
in science”. M. Mateev, professor at Sofia University. 

 

WHAT IF THE WAVES OF LUIS DE BROGLIE ARE REAL WAVES INSTEAD OF SOME 
OBSCURE “STATISTICAL WAVES”? 

Since the late 1920s, the theory formulated by Niels Bohr and his colleagues at 

Copenhagen has been the dominant interpretation of quantum mechanics. Yet an 

alternative interpretation, based on the work of Luis de Broglie and reformulated and 

extended by David Bohm [1,2] and his colleagues, explains the experimental data equally 

well. Through a detailed historical and sociological study of debates within and between 

opposing camps, and the reception given to each theory, Cushing [3] shows that despite the 

preeminence of the Copenhagen view, Bohm’s interpretation cannot be ignored. 

Copenhagen interpretation became widely accepted not because it is a better explanation 

(“how”) of the atomic phenomena than Bohm’s, but because it happened to appear first. 

 Since these two interpretations of quantum mechanics have the same set of equations 

available for calculation, it might seem as though they should be observationally 

completely equivalent. If the calculation of any observable quantity is well posed in both 

theories, then both theories will calculate, or produce, the same answer when the formalism 

is applied. This appears to have been Bohm’s own view because, when asked directly in 

1986 whether there were any new predictions from his model, Bohm responded: “Not the 

way it’s done. There are no new predictions because it is a new interpretation given to the 

same theory”.  
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But later Bohm and Hiley in their book [2] (p.345) wrote: “In this section we shall 

discuss some suggestions of our own in which we show how our proposals can also be 

extended beyond the current quantum theory”. Bohm was convinced that new results 

beyond the Copenhagen’s quantum physics could be obtained. He insisted that the science 

must be opened for any possible interpretations and only experiments or observations can 

choose the interpretation which corresponds to reality. 

The main difference between Copenhagen and Bohm’s points of view consists in the 

Copenhagen’s illusion that the wave function is a complete description of the quantum 

objects. I show in this paper that the quantum and even the classical physics are not 

complete (in sense that all known elements in nature are connected properly). This can be 

proved, if we remember that each particle in nature (including photon) possesses energy 

(J) and equivalent mass (m=J/c2). Correspondingly, the particle’s gravity field (G), and 

gravity potential ϕg, are real. When particles and electromagnetic fields interact, the 

gravity potential (ϕg) is not taken into account neither in classical nor in quantum 

physics. According to the Copenhagen interpretation, “uncertainties”, “dualities”, 

“probabilities”, etc., are natural properties of the Universe. These properties are universal 

not because the human beings cannot examine nature in more details, but because deeper 

knowledge does not exist. These are the limits placed upon the Nature (and knowledge). It 

must be accepted that the Nature does not go its own ways (laws) but chooses the next 

steps by playing dice. This is what I call “Copenhagen’s illusions”.  

Bohm’s point of view allows us to think that these qualities (probabilities, 

uncertainties, duality) are not inherent properties of nature, but are a result of our inability 

to determine (or know) exactly some set of “initial conditions” for resolving a concrete 

task. But if one can determine or guess some set of different initial conditions, it may be 

possible to obtain new results. 

 In this work I hope to show that Bohm-de Broglie’s interpretation leads to additional, 

more reach, unexpected results. I will use Bohm’s point of view and will show that in some 

cases the “initial conditions” can be known, can be measured or can be guessed. Then 

Bohm’s (and de Broglie’s) interpretation is more productive, with new, experimentally 

measured (or measurable) predictions (“beyond the contemporary quantum physics”). 

Bohm’s point of view is closer to the classical physics. This is a necessary condition for 

two theories, following each other. Despite introducing gravity waves, my point of view 

also is very close to classical physics. Here it is shown that “beyond the Copenhagen’s 
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Quantum Physics” even radioactive decay is not probabilistic (chance events) but follows 

exact deterministic laws.  

This “essay” consists of three sections: In section I, the photon-soliton initial 

conditions (metric properties) and gravity wave are briefly explained and introduced for all 

particles (including photon). In section II the soliton’s properties are used for the 

description of an individual atom’s properties. The exact energy of the emitted photon is 

obtained for quantum transition (k>n) following an electron’s acceleration. In this section, 

the “own life-time” of a single hydrogen atom in an excited state, the width of the excited 

levels, the mean-lifetime of the ensemble of hydrogen atoms and the spectral width of the 

emitted photons are also described. In the last section III, the possible shape of the soliton, 

the possible shape of gravity field, the gravity wave function, the “common” wave function 

of photon and correlated photons, the spin of the photons are shown and discussed. Some 

known experiments with correlated photons are explained. The new proposals for 

experiments with correlated photons are described. It is also shown that some of these 

experiments are interpreted wrongly using non-locality.  

 

I. PHOTON AND SOLITON INITIAL CONDITIONS 

A COPENHAGEN’S ILLUSION: THE EXPRESSIONS FOR THE ENERGY OF THE 
PHOTON AND THE ENERGY OF CLASSICAL ELECTROMAGNETIC WAVES ARE COMPLETELY 
DIFFERENT AND CANNOT BE DERIVED FROM ONE ANOTHER. 

Because the following results are very essential for studying the initial conditions for 

photons and atoms, I make here a brief (but sufficiently full) résumé of our papers [4,5] 

(with permission of my co-author and friend – B. Slavov).  

Many authors assume that each quantum system emits a photon for a very short period 

of time, in any way shorter than the mean lifetime τ=T1/2/ln(2) (T1/2  is the time during 

which one half of quantum systems are still in the excited state. The photon is emitted in a 

random, not predefined direction [6]; the photon momentum hω c is in the direction of its 

propagation, and an equal momentum, but in opposite direction, is transferred to the 

quantum system emitting the photon. When the photon is absorbed, the momentum 

received by the absorbing quantum system is in the direction of propagation of the 

absorbed photon. In the same papers [6] Einstein wrote that the above properties of 

photons were the most important results of his work, although in the same work he 

formulated the hypothesis about stimulated emission and derived the formula of Planck. In 
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this work he found the relations between the coefficients of emission and absorption. We 

all know very well these papers and we all were so fascinated by his derivation of the 

Planck’s formula that we missed to see the important properties of photons, which could 

have a great consequence for the subsequent development of science. This consequence is 

simple and clear: each quantum system emits electromagnetic pulses like a radar (the 

radar was unknown to Einstein in 1916). 

A SMALL ILLUSION. In 1966 the much respected by me professor H.H. told me that 

the photons are spherical electromagnetic waves. I asked him: “And what about the 

momentum and the recoil of the emitting quantum system? (He knew about the effect of 

Moessbauer). His answer was that when the spherical wave is absorbed (emitted) by a 

quantum system, the emitting (and absorbing) quantum system receives a recoil 

(Copenhagen’s collapse of wave: At the same time two particles, in spite of the distance 

between them, simultaneously receive momentum). In addition he explained that when a 

photon, emitted by a star one million years ago is absorbed here on Earth, the act of 

emission and absorption also lasts one million years. The photon momentum is p = F.t 

where F is force and t is the duration of action of this force. If the interaction time is 

longer, then F is smaller in order to conserve the momentum (greater distance, smaller F). 

The only important thing is the “conservation of momentum and energy”. I know many 

prominent and respected scientists who even in our days think in the same way. It was then 

when I was for the first time confronted with a mystical, illusory explanation of reality. 

Properly, such things are some of the Copenhagen’s illusions, which allows sending 

signals faster than the light velocity (independent of the distance between them, two 

quantum systems simultaneously receive momenta). 

In analogy with the radar, a large number of quantum systems resemble a large 

number of radars rotating chaotically in all directions and sporadically emitting 

electromagnetic energy. The average emission is spherically symmetric, but each radar 

pulse has its own direction, energy and the momentum received by the emitting antenna in 

direction opposite to the electromagnetic pulse. The time for momentum transfer is equal 

to the time for emission (or absorption) of electromagnetic energy - neither more, nor less 

than this time. The experiments show that each photon does not change its shape (and 

volume) in space and time because it transfers its energy and impulse to another atom (at 

unrestricted distance).  

 

I.1. The soliton  
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J. P. Vigier showed [7] that the photon could be represented as a solitary 

electromagnetic wave - a soliton. In our works [4,5] we proposed a soliton-like model of 

the photon. As a consequence, attributes such as effective volume, amplitude, gravity field, 

and frequency (measured by interference phenomena and which coincides with the 

frequency of de Broglie's wave) can be used to describe the soliton. We show that the 

electromagnetic amplitude, volume, classical cross-section and photo-effect cross-section 

of the photon-soliton can be estimated in an empirical as well as in an analytical way 

[4,5,8,9]. The pioneer work of Russell [10], where he describes the hydro-dynamical 

solitary wave, has undergone impressive development in the last 35 years [11-13]. It has 

been applied in different areas, including the description of cosmic objects and elementary 

particles.  

We begin with the statement that when in a quantum system a quantum transition 

(between two levels, k >n) takes place, the energy always has a fixed value and if the 

photon is an electromagnetic soliton, it must posses a fixed amplitude of its 

electromagnetic field. As a consequence there should be a relation between the 

amplitude of this electromagnetic field and it frequency (or de Broglie’s wavelength).  

 

I.2. Empirical soliton-like model for the photon 

In the electrodynamics, the relation between the energy density of the electromagnetic 

field (Ea) and the frequency ω of the photon is given by:  

V
N

E a
a

ωh
=2 ,        (I.1) 

where Na is the average number of photons with frequency ω which occupy the 

volume V. To be more specific, let us consider an idealised radar pulse as shown in Fig.I.1 

(the dashed area at a distance from the antenna). It must be remembered that this packet 

has a mass equal to m = J/c2 = hωNa/c2
, and a corresponding gravitational field. Something 

more, even if this packet contains one photon only, a gravitational field still exists. Let 

us assume that in the constant volume Vr the energy density Er
2  is also a constant. In this 

case for the energy Jr of the radar pulse we have:  

rrr VEJ 2=         (I.3) 

If we take a larger volume Vg > Vr, which includes the radar pulse volume, the density 

of the radiation in volume Vg appears to be smaller, E Eg r
2 2< , since the energy Jr of the 

radar pulse remains the same but this energy occupies a larger volume Vg:  
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r

g

g

r

V
V

E
E

=2

2

        (I.4) 

The energy of the radar pulse Jr can be estimated from the new volume Vg and the new 

energy density Eg
2 : 

J E Vr g g= 2         (I.5) 

The ratio between (I.3) and (I.5) is: 

12

2

=
gg

rr

VE
VE         (I.6) 

This relation is valid always when Vg > Vr because the actual electromagnetic energy 

in the radar volume is constant. This is not the case when one takes a volume Vs < Vr, Vs 

being a part of Vr. Then the energy density in the smaller volume Vs is preserved ( 2
rE ) and 

it is not possible to obtain (I.6), but we have instead:  

12

2

>
sr

rr

VE
VE         (I.7) 

If the photon is a soliton [7], the volumes of the solitons may be very small 

(comparable to the dimensions of the atoms) and one can write for the energy of the 

soliton:  

VEJ 2
0== ωh        (I.8) 

 

  
Fig. I.1. Schematic representation of an idealised radar pulse having a constant 

electric field amplitude Er, and occupying a constant volume Vr. 
 

 

This inevitably leads to a constant relation between the amplitude E0, frequency ω and 

volume V, of the soliton. Moreover, when a quantum transition takes place, the energy 
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always has a fixed value and if the photon is an electromagnetic soliton, it must posses 

fixed amplitude of its field.  

It is shown [4,5] that for all atoms there is a fixed relation between the Coulomb 

electric field E acting on an electron in the lowest-lying atomic state, and the frequency of 

the photons (ω0), which energy is exactly equal to the ionization energy of such atomic 

state. E is calculated from the distance (r) between nuclear charge and electrons. The 

results show that within the bounds of the accuracy of the experiments, there is a constant 

ratio (K) for all elements:  

KE
≅3

0

2

ω
        (I.9) 

This shows that the Coulomb field (E) binding the electrons in all atoms is related to the 

frequency ω0 of the photons with energy equal to the energy of ionisation. We can estimate 

K from the energy of ionisation of hydrogen, hω 0 136= .  eV , and (I.9) (also for hydrogen):  

135
3
0

4

2

103.3 −−×≅= gscm
r

eK
ω

     (I.10) 

Most authors assume that a quantum system does not emit when occupying one of the 

states with k > n. While following a stationary trajectory (guided by the real de Broglie's 

wave), the atom does not emit electromagnetic radiation. It emits only during a transition 

when the radial co-ordinates change for a very short time interval (after Copenhagen’s 

view this is a quantum jump). According to Pauli [14] and Einstein [15], the quantum 

transition (rk → rn) takes place for a very short time, shorter than the mean life-time (τ) (of 

the excited state, k). Pauli estimates the time of transition to be on the order of 2π/ω It is 

enough to accept here that the time for emission (absorption) of the photon depends on the 

frequency as stated by Pauli:  

t
b

e =
0

ω
         (I.11) 

It is shown [4] that (for electron) b0=1/2. Since we assume that the single photon 

contains a solitary electromagnetic wave - soliton, we conclude that the energy of the 

soliton must be equal to the energy of the photon (I.8). To calculate the volume Ve of the 

soliton, we must know its effective length le and effective classical cross-section Se.  

In our case the electromagnetic field and the effective time (te) are related as shown in 

Fig. I.2. The exact behaviour of the function E(t) is still unknown, but it is not necessary 

for our analysis. It is sufficient to know that:  
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Fig. I.2. Schematic representation of the electromagnetic field of the soliton, the 
effective time te, the amplitudes E0, H0 and the effective cross-section Se.  

 

( )E t E t dte0
0

=
∞

∫         (I.12) 

If the effective time of emission is (te), the length le is given by:  

le = c/2ω = λ/4π        (I.13) 

where c is the speed of light. An expression for the macroscopic cross-section Se of the 

soliton will be given later in the text.  

 

I.3. The photon-soliton and its interactions 

In the Photo-effect in a hydrogen atom, the soliton electric field (E0) acts on the two 

electric charges (electron and proton) in opposite directions. The momentum of the electric 

force is given by:  

eE t m J m ve0 0 02 2= +        (I.14) 

Here e is the charge of the electron, te = b0/ω is the effective time of interaction, m0 is the 

mass of the electron, J is the binding energy of the electron, 2 0m J  is the momentum 

necessary for the ionisation, and v is the velocity of the ejected electron. In the case when 

the photon energy is exactly sufficient for ionisation (v = 0), we obtain:  

eE
b

m0
0

02
ω

ω= h         (I.15) 

Here hω  is the energy of the photon equal to the ionisation energy J. J includes the 

gravity energy in the same way as the interaction of an electric field E0 with charged 
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particles includes also the energy of the magnetic field. After some transformations we 

obtain:  

2
0

3

2
0 8

e
mE h

=
ω

 (b0=1/2)       (I.16) 

The soliton energy:  

The energy of the soliton is:  

ω
ω

h==







= eVE

m
eb

EJ 2
02

0

22
02

0 2
      (I.17) 

Analytical expression for the effective volume, Ve is (b0=1/2):  

Ve = 







2

0

2

8 ωm
e          (I.18) 

The dimension of this quantity is volume, and we treat it as an effective volume of the 

soliton (Ve =Sele).  

In conclusion, we have obtained expressions for the effective volume of the soliton 

and its effective length (le=c/2ω). The macroscopic cross-section (Se) of the soliton is: 

Se= Ve/ le         (I.19) 

I.4. The photon-soliton and the muonic atom 

It is well known that photons with equal energies are identical. Assuming that solitons 

with equal energies are also identical, it is evident that a fundamental relation like (I.16) 

should not depend on the type of the quantum system that absorbs (or emits) them. To 

analyze this point one can repeat the calculations for the photo-effect considering the 

interaction of a soliton with a muonic atom in which the electron is replaced by a muon. 

Since the masses of the electron and the muon are different, one could expect relation 

(I.16) to be different for the muon. More precisely, in the muonic case in place of 

expression (I.16) we have: 

223

2
0 2

eb
ME h

=
ω

         (I.20) 

M is the mass of the heavier particle (muon). If the fundamental relation (I.16) should not 

depend on the type of the quantum system that absorbs the photons, the constant b must be 

different from the constant b0. We have: 

M
m

b
b

eb
m

eb
ME 0

2

2
0

22
0

0
223

2
0  ;22

===
hh

ω
       (I.21) 

The difference between the constants b0 and b shows that the effective transition time 

for the process of the soliton absorption in those systems is different because of the 
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different masses of the particles participating in the photo-effect. It was shown [4] that the 

constant K0 does not depend on the mass of absorbing or emitting particles. 

022
0

0
223

2
0 22 K

eb
m

eb
ME

===
hh

ω
≈ 3.3x10-35gs/cm     (I.22) 

This result indicates that for a soliton, the relation between the electromagnetic 

amplitude and frequency is a universal one. Another important result is that, although the 

soliton’s interaction time with particles of different masses is different (b ≠ b0), solitons 

with equal energies cannot be distinguished from each other - neither energetically, nor 

spectroscopically. This is because in the case of solitons with equal energies, the principal 

relation between the electromagnetic energy density and frequency, as well as soliton’s 

volume, remain the same.  

I.5. The macroscopic cross-section of the soliton and the photo-effect cross-section 

From the expression of the effective volume (I.18) and the effective length, the 

macroscopic cross-section is determined from (I.19): 

Se= e2/4cm0ω        (I.23) 

For b0 = 1/2 the cross-section Se can be calculated for any energy of the solitons (see 

Table I.1). If we accept that the soliton possesses a classical effective cross-section, this 

cross-section should be related to the probability of interaction, e.g. in the case of the 

photo-effect. In Table I.1 we summarise the experimental cross-sections for the photo-

effect (στ) for different elements when the energy of the photon is exactly equal to the 

ionisation potential for the K-shell. As it can be seen from the corresponding column in 

Table I.1, the calculated ratio στ/Se is practically a constant. An exciting result is that for a 

change in the value of the ionisation potential and the cross-section of more than three 

orders of magnitude, the ratio στ/se changes by less than ±15 % (for b0 = 1/2). 

These results are easy to explain from a classical point of view. Let us consider the 

interaction cross-section στ as a sum of the classical cross-section Se of the soliton, and the 

classical cross-section (SK) of the shielded area of the K-electron shell of the atoms 

(Fig.I.3):  

SK= 4/2
krπ         (I.24) 

where rk is the radial co-ordinate of the K-shell for each element. The value of the area 

within the K-electron shell is:  

ω
ππ

0

2

8
4

m
rS KK

h
==         (I.25) 
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Fig. I.3. The shaded region (soliton) in the K-shell plane (open circle) with which 
the soliton interacts. In the case of photo-effect, it has a radius of rk/2 and an area of 
π(rk)2/4.  

 

As a result, for all elements, the interaction cross-section (I.24) for a photo-effect is:  









+=

ω
π

ω
στ

00

2

84 mcm
e h       (I.26) 

For the value of the ratio στ/Se it is obtained: 

στ/Se = 





 + 22
1

e
chπ =(1+π/2α)≈2.16x102    (I.27) 

Here, hc/e2 =1/α ≈137, where α is the fine-structure constant. This constant will 

appear further when soliton and atom properties are related to one another. The 

coincidence of the above value (I.27) with the values in the corresponding column of Table 

I.1 is surprising. It is known that the calculation errors for στ (for the case when the energy 

of the photon is equal to the ionisation potential) are quite large. In the column for στ/Se the 

difference between the minimum and the maximum values is approximately 30 % (for all 

elements). The accuracy is better than ±15 % for all elements. The results given in Table 

I.1 show that the assumption K0 = K is justified (for b0 = 1/2) and that relation (I.26) can be 

used for the calculation of the cross-section στ at the exact energy of ionisation. This is an 

experimental proof that the described solitons exist in reality (with effective volume, 

Ve, length, le, and cross-section, Se). 
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Table I.1. For all elements the energy (hω) and experimental cross-section (στ) change 
more than 103 times, but ratio (στ/Se) remains a constant, (I.27).  

 

Element hω, eV Se, cm2 στ, cm2 στ / Se 

Be 0,113.103 123,0.10-22 259,5.10-20 2,113.102 

N 0,387.103 35,70.10-22 71,60.10-20 2,004.102 

F 0,682.103 20,30.10-22 46,20.10-20 2,270.102 

P 2,144.103 6,490.10-22 13,70.10-20 2,112.102 

V 5,465.103 2,540.10-22 5,090.10-20 1,998.102 

Br 13,47.103 1,030.10-22 1,860.10-20 1,890.102 

Ag 25,51.103 0,545.10-22 0,986.10-20 1,807.102 

Pr 41,99.103 0,431.10-22 0,572.10-20 1,726.102 

U 115,6.103 0,119.10-22 0,181.10-20 1,520.102 

 

  

I.6. Comparison with Planck’s density of radiation 

As it is known, Planck’s energy density of radiation is 

( )
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     (I.28) 

The unit frequency interval is dω = 1 s-1. The part which depends on temperature (T) is 

usually interpreted as the average number of photons ( N ) in unit volume. So, (I.28) can be 

represented as 
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When N =1, equation (I.29) can be compared with the equation for the soliton energy 

density ((E0)2=ρs): 
3
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This confirms our assumption that in volumes larger in comparison with the actual 

volume of the electromagnetic field, the energy density (because of the larger volume) 

appears to be smaller. The soliton energy density is consistent with Planck’s energy 

density. 

These results explain the first unsuccessful attempt to describe the photoelectric effect 

within the framework of the electromagnetic wave theory. The soliton (particle) and its 

energy are concentrated in a very small volume.  

 
 
Table I.2. Some important parameters of solitons with different energies. Ve is the 
volume, P - the pulse power, Se - the macroscopic cross-section and Φ - the energy flux 
of the soliton (the accuracy is ∼20 %). Energy density of photon energy 4.2x106 
corresponds to energy density of electron (J=m0c2). 
 

hω,  

eV 

ω,  

s-1 

Eo
2, 

 J/cm3 

Ve,  

cm3 

P,  

J/s 

Se, 

 cm2 

Φ, 

J/cm2s 

4,1.10-5 6,28.1010 8,2.10-10 8,0.10-15 8,3.10-13 3,3.10-14 2,48.101 

1.100 1,51.1015 1,16.104 1,37.10-23 4,8.10-4 1,4.10-18 3,4.1014 

2.100 3,02.1015 9,00.104 3,43.10-24 1,9.10-3 6,9.10-19 2,8.1015 

1.101 1,51.1016 1,16.107 1,37.10-25 4,8.10-2 1,4.10-19 3,4.1017 

1.102 1,51.1017 1,16.1010 1,37.10-27 4,8.100 1,4.10-20 3,4.1020 

1.103 1,51.1018 1,16.1013 1,37.10-29 4,8.102 1,4.10-21 3,4.1023 

1.104 1,51.1019 1,16.1016 1,37.10-31 4,8.104 1,4.10-22 3,4.1026 

1.105 1,51.1020 1,16.1019 1,37.10-33 4,8.106 1,4.10-23 3,4.1029 

4,2.106 6,34.1021 8,52.1023 7,79.10-37 8,5.108 3,3.10-25 2,6.1033 

 

According to our opinion, the most important argument against the electromagnetic 

soliton in vacuum is that the classical electromagnetic wave (consisting of many photons) 

"has to decay" (diffraction divergence). It is known that soliton solutions are obtained for 

pulse propagation in a non-linear media. At first sight there could be no non-linearity in 

vacuum that would lead to soliton solutions. But it may only seem so. If we accept the 

discussed ideas (and data in the Table.I.2), we can conclude that from the moment of it 

emission the soliton carries energy with enormous density. The equivalent energy mass 

J/c2 (and gravity field, G) may change the properties of space and lead to the required 

non-linear solutions. The observation of macroscopic diffraction divergence must be due to 

the divergence of many photons (or other particles).  
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1.7. Gravity Potential of Particles and Photons. 

In many books and text books one can find the following problem (for home-works of 

students): Expand the field of electric charge (e), moving with constant velocity (v), in 

terms of  plane monochromatic wave (Landau and Lifshitz, Teoria Polia, (in Russian) 

[16]). 

The answer of the problem: In the nonrelativistic case the potential (ϕe) is: 

ϕe =(e/2π2(k2 – (kv/c)2))(exp(-i(kv)t))     (I.32) 

Here k = 1/λ= m0v/h. From this follows that the frequency of the wave is 

ω = kv;  (I.33) 

In relativistic case, k= 1/λ=m0v/(h(1-v2/c2)1/2), (v≤c) and the potential ϕe becomes: 

ϕe= (eh2/2π2(m0v)2)exp(-i(ω)t))=Aeexp(-i(ω)t) (I.34)  

Gravity field of the particles has the same structure as the electric field, gm0/r2→ e/r2 

(g is the constant of gravitation). I assume that the gravity potential of a moving particle 

(ϕg) must be proportional in every moment (t) to the electric potential ϕe. 

Consequently expanded gravity potential of the particle (ϕg) must be  

ϕg= (gh2/2π2m0v2)exp(-i(ω)t))=Agexp(-i(ω)t)) (I.35) 

It can be seen that the gravity amplitudes Ag=gh2/2π2m0v2 depend on the masses and 

velocities of particles. Only for very small masses and velocities the gravity amplitude (Ag) 

is sufficiently large (Fig.I.4).  

As was shown, a solitary photon consists of a very small electromagnetic particle 

(soliton) with a mass (m0=Jmn/c2 = hω/c2), plus its surrounding gravity potential, (ϕg). This 

particle (soliton) moves with velocity v = c. The frequency of the gravity wave can be 

represented also as ω = Jmn/h. For gravity wave length it is obtained: 

λ= hc/Jmn = h/p  (I.36) 
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Gravity wave length (λ) coincides with the length of de Broglie’s (matter)  wave. 

 Fig.I.4 Relative amplitude: doted line is non-relativistic case. The solid line - 
relativistic case.  

The photon’s gravity potential is: 

ϕp= (gh/2π2ω)exp(-i(ω)t)) (m0c2=hω)     (I.37) 

The gravity amplitude (Ap) of the photon is: 

Ap = (gh/2π2ω), or Ap= gh1/2(K0Ve)1/2/2π2 (I.38) 

In the second equation ω is replaced with the effective volume Ve and constant K0 of 

the soliton. The amplitude of the photon’s gravity potential (Ap) is proportional to (Ve)1/2. 

The full potential of particles is ϕeg= ϕe+ϕg.  At each moment of time t, the potential 

ϕg<<ϕe and for example if the particle is electron, then ratio ϕg/ϕe can be estimated easily: 

ϕg/ϕe= gm0/e ≈ 1.28x10-25       (I.39)      

The full potential can be approximated: 

ϕeg= ϕe+ϕg = (ϕe+1.28x10-25ϕe) ≈ ϕe  (I.40) 

Probably, gravity potential is appropriate (large enough) for micro-particles 

observations only (Fig.I.4). (Like a potential of particles on a liquid surface wave [17], 
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where, because of the energy conservation, the particle cannot exists in a place with ϕg = 

0). As can be seen, all sorts of particle fields can be presented with common wave function: 

ϕ = Aexp(-iωt)        (I.41) 

(The constant A depends on particle’s properties). 

I don’t know if, as Tauber writes [18], “purely electromagnetic elementary particles” 

with a nonzero mass at rest (m0) are possible, but when energy conservation law is 

concerned, the “negligible” gravity potential cannot be neglected. 

 

II. SOLITON’S INITIAL CONDITIONS AND THE HYDROGEN ATOM. 

Bohr’s atomic model of Hydrogen is the simplest object for understanding my new proposal, 

giving an explanation how different initial conditions of an individual atom change the results for 

an ensemble of hydrogen atoms. In Section I, some metric properties of described photon-soliton 

and hydrogen atom resemble “classical initial conditions” and conjecture that photon’s and 

atom’s properties may be better understood with the help of Bohm’s “initial conditions”. The 

main tool for determination of the new atomic initial conditions is the photon-soliton (Section I.) 

[4, 5, 19]. New results that follow the use of such new initial conditions are confirmed 

experimentally. 

In the quantum mechanics, there is nothing more realistic than Bohr's model of a solitary 

hydrogen atom. Realistic, but not complete. Bohr guessed only one pair of possible initial 

conditions. His theory cannot explain many properties of hydrogen: The time of transition, the 

moment of disintegration of excited states (this is forbidden in Copenhagen’s interpretation), 

intensities of hydrogen lines, width of the excited levels, the properties of heavier atoms and so on. 

Because of these failures, Bohr himself refutes his genial model and inserts in nature and science 

his inherent uncertainty, duality, probability. How can this uncertainty, inherent in nature, be 

understood? How can an electron (or light) be observed sometimes as a wave, sometimes as a 

particle, and never simultaneously as a wave and a particle? Only when such an object is not 

observed can it be a simultaneous superposition of a wave and a particle. In connection with 

these, Schrodinger writes in a private letter: “this stupendous and completely not philosophical 

stupidity of Copenhagen”, and after this cuts short: “I know that this is not a fault of N.B., he 

doesn’t find the time for a study of philosophy. But I have a deep pity, that with his authority, the 

brains of one, two or three generations are entangled and forbidden to think over the problems, 

which “He” claims are resolved.” (Jean-Marc Levy-Leblond, Mots et Maux de la physique 
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quantique, Rev. Int. Phil., No 212, 2000). Three generations have passed. Now we can state that 

gravity waves and particles (in reality) exist simultaneously. 

On the basis of photon-soliton properties, derived from experimental interaction of a photon 

with a hydrogen atom [4, 5], I succeeded in selecting a set of,  “some sort” initial conditions for the 

excited states of hydrogen. These additional initial conditions, together with additional hypotheses 

allow for a description of а series of unexpected and experimentally proven results. Such are the 

period of transitions between different hydrogen states (time necessary for “quantum jumps”). The 

“own lifetime” of the excited states of a solitary atom or nucleus is the period between the 

excitation and decay of the excited level. (This is the time after excitation of a solitary atom when 

Schrödinger’s cat in the black box will be killed from the atom’s decay – also beyond the 

Copenhagen interpretation). For the first time, this theory allows us to calculate the exact “mean 

lifetime” of the excited states (for a statistical ensemble of hydrogen atoms) – which is “beyond” 

the capabilities of Copenhagen’s quantum theory. The solitons allow for an explanation of two-

slit interference experiments with entangled (correlated) photons. The soliton properties allow to 

predict the outcome of new experiments, which show that a particle-soliton must pass only one of 

the two opened slits, but the real wave of de Broglie (gravity wave) passes two slits resulting in a 

nice interference pattern (consistent with [17]).  

 

 
Fig.II.1. A diagram of velocities (Vk, Vn) and acceleration (a), (k=2, n=1). The shape of 

acceleration curve is not exactly known, but the effective time for velocity change is te = 
λ/4πc=1/2ω, with a maximum value a0. The own lifetime is ti . 
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Fig.I.2 represents a soliton electromagnetic field, E(t). The shape of the field is not known 

exactly. The effective time is te, the effective classical cross-section Se, the effective volume Ve= 

Sele ,  and the shape resembles the contour of a bell with a maximum E0. As it is known from the 

electrodynamics, a charged particle emits radiation only when it is accelerated. The soliton’s 

electric field at a distance x from the accelerated electric charge at every moment (t) must be 

proportional to the acceleration (a), in a latter moment (t = x/c). The curve of electron’s 

acceleration (a(t)), (Fig.II.1), must correspond tо the shape of the electric field (E(t)), on Fig.I.2. 

Such acceleration is possible when the electron changes it velocity from a constant velocity (Vk) to 

a higher constant velocity (Vn), as shown on Fig.II.1.   

 

II.1.The soliton and the hydrogen atom 

In Bohr’s hydrogen atom, the velocity of the electron at the upper level (k) is smaller in 

comparison with its velocity at the lower level (n), (Fig.II.1). The electron in a stationary state does 

not emit photons. The Coulomb and gravitational forces are in equilibrium with the centrifugal 

forces between the electron and proton moving around their centre of mass. Because the gravity 

forces are negligible (about 10-42 times) in comparison with the electromagnetic forces, Bohr has 

neglected the gravity. Without this rational approximation, the energy of the emitted photon must 

be:  

Jnk = 













 −

+
222

0
2

0
2 11

2
)(

kn
mgMme

h
 

where M is the mass of the proton (m0 is the mass of electron). Bohr’s approximation is so 

perfect that Rydberg’s constant of hydrogen (R0), the energy of the levels, the frequencies of the 

lines (in the maximum) are all in very good agreement with the experiments (when corrected with 

equivalent mass of proton and electron). Everyone must think that Bohr’s approximation is 

completely satisfactory and cannot hide essential things from us. Some hypotheses show though 

that it may be not so. One can make a logical assumption that the gravity field energy is 

negligible, but is a constant and necessary part from the total energy of the particle. Gravity 

fields of proton and electron, expanded as plane monochromatic waves, have one and the same 

wave-length (λ = h/MV = h/m0v =h/p). The two particles form an undivided hydrogen atom.  

The assumptions I make here are: 

a) The particle’s trajectory coincides with the velocity’s direction, and consequently, the 

gravity wavelength λ must be measured along the particle’s trajectory. In a stationary state, 
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the proton and electron are both positioned at the maximum of the gravity’s amplitude, and 

cannot emit photons. The cause is that the photon must take its gravity energy from the 

hydrogen’s gravity energy. When this happens, the proton and the electron must change 

their positions. 

b) If the atomic center of mass moves with respect to surrounding objects with velocity Va, 

the gravity wave length of hydrogen is  λh=h/(M+m0)Va.  

c) The product of the full particle’s momentum p, and the gravity wave length λ, is the 

Planck’s constant h = pλ. The same constant (h) is the ratio between the full energy of a 

particle, J, and its gravity frequency, h = J/ω. This likes the speed of light, which can be 

expressed as c = J/p and c2 = J/M.  

The experiments [20] with ultra-cold neutrons show that their motion in Earth’s gravitational 

field (in special conditions) deviates strongly from the gravity law (1/R2) and this deviation is 

explained very accurately using de Broglie’s wave. When two or more particles interact, the 

gravity energy conservation law and the gravity momentum conservation law as well, should not 

be neglected. For example, when a particle soliton is emitted, its gravity energy must be a part of 

the full atomic gravity energy. An electromagnetic particle - soliton plus it gravity wave is what 

I call photon.  

Gravity is an inherent property of nature, penetrates in all natural phenomena and gravity 

waves become observable for microscopic masses and comparatively small velocities. The gravity 

frequency does not depend on the direction of velocity (ω = J/h), and therefore the soliton plus a 

corresponding gravity energy (photon) can be emitted only when the absolute value of the 

charged particle’s velocity changes. When an excited atom decays, two processes start: first, the 

electron accelerates, when spiralling from upper excited state (k) to the lower state (n) (its absolute 

velocity increases). Second, at the same time (simultaneously with acceleration), soliton’s gravity 

volume starts to increase (from zero), the electromagnetic field amplitude (E0) reaches its 

maximum value at the maximum of electron’s acceleration. After this, the electromagnetic 

amplitude decreases to zero (zero acceleration) and the photon (soliton plus gravity wave) is 

emitted. Ggravity wave reaches a frequency (ωkn), which corresponds to the energy of the photon. 

The process terminates when the electron reaches the lower level velocity (Vn), and its gravity 

frequency ωn = ωkn + ωk. So, the soliton gravity energy – (constant part of the total atomic gravity 

energy) is conserved (ωkn = ωn - ωk). It must be remembered that when describing electron’s 

motion about the centre of mass, an equivalent description holds for proton’s motion. The 
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absolute proton’s velocity and acceleration are very small in comparison with electron’s one, but 

the gravity waves of the two particles have wave-length λ and form a solitary quantum system 

able to emit a single photon (during an effective time period te=1/2ω). Copenhagen school 

accepts that it is useless to think about this period. In some mysterious way the electron passes 

from the upper to the lower level (“quantum jumps”). 

It must be accepted that the effective action time of a soliton’s electric field (emitted from a 

hydrogen atom), (Fig.I.2), corresponds to the effective time of transition in the hydrogen atom, 

(Fig.II.1). Then one can find the average value of the effective acceleration of the electron (when 

the transition occurs), and knowing this acceleration, it is possible to obtain the energy of the 

emitted photon.  

 

II.2. Acceleration. 

 The effective time (te=1/2ωkn) of the soliton requires a corresponding acceleration time of the 

electron when the electron passes from upper (k) to lower level (n). On the Fig.II.1, the absolute 

velocities (Vk, Vn) are shown schematically together with the average acceleration (a(t)). The 

effective time of acceleration and the shape of the acceleration curve must correspond to the 

effective time of the soliton and to the shape of soliton electric field. Knowing the absolute 

velocities (Vk and Vn – perpendicular to trajectory radius), one can obtain the effective acceleration 

(a(t)) of the electron when passing from upper level (k) to lower level (n). The corresponding 

velocities (according to Bohr’s approximation) are: 

Vk = e2/hk;     Vn = e2/hn      (II.1) 

If gravitational force is taken into account, then the velocities are: 

Vk = (e2+GcMm0)/hk;     Vn = (e2+ GcMm0)/hn    (II.1a)  

Now this correction is not necessary and for simplicity (II.1) will be used. 

The effective acceleration is: 

 a = dV/dt = (Vn – Vk)/te = (e2/h)(1/n – 1/k)/te   (II.2a)  

Substituting (te) we obtain: 

a = 2ωnk(Vn – Vk) = (2e2ω nk /h)(1/n – 1/k)   (II.2b) 

The effective path (Hnk is the travelled effective distance) of the electron while changing it state is: 

Hnk = (a/2)t 2
e  + Vkte       (II.3) 

 Substituting here (te), and Vk from (II.1), one can find the effective path: 

Hnk = (e2ωnk/h)(1/n – 1/k)(1/4ωnk
 2) + e2/hk(1/2ωnk)    
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Hnk = e2/h(1/2ωnk)((1/2)(1/n – 1/k) + 1/k)    (II.4) 

 

II.3. Energy of the photon-soliton.  

According to the classical electrodynamics, when a charged particle emits energy, the force of 

electromagnetic reaction must be included. The average force, taking into account the reaction, due 

to the force of emission, is F = am0. This force is a result of the Coulomb and gravitation fields of 

hydrogen atom, and the reaction to the photon emission (soliton plus gravity wave). So, the energy 

(Jnk) lost by the atomic system can be expressed, substituting the necessary quantities, by the 

equation: 

Jnk = FHnk = am0Hnk  (II.5) 

Substituting (II.2) and (II.4) into (II.5), and using II.1a, we obtain: 
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This is the energy, which the electromagnetic particle – photon (soliton plus its gravity 

energy), carries. The gravity frequency (de Broglie’s ωnk), is: 

ωnk =  Jnk/h = 
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As it can be seen, in this way, the energy obtained through the absolute effective 

acceleration of the electron, coincides exactly with the results of Bohr.   

From the classical electrodynamics we know that a free electromagnetic field is proportional 

and perpendicular to the acceleration vector of the charged particle emitting it, and to its direction 

of propagation. The energy of the emitted field is redistributed in the whole space and diminishes 

with the distance (r) as 1/r2. The field has a maximum at a direction perpendicular to the 

acceleration vector. Up to now it was not possible to calculate the effective value of the electron’s 

acceleration in the hydrogen atom because the time for electron’s velocity change was not 

accessible for investigation. Even the questions “how long is this time” and “when does the 

transition occur” are forbidden from Copenhagen. Now, the properties of the soliton determine this 

time as well as the effective acceleration. According to the classical electrodynamics, the electric 

field of soliton must be perpendicular (in every moment te) to both the acceleration vector a(t), and 



 24 

the direction of propagation, which coincides with the x-axis (Fig.I.2). Because the acceleration 

vector a(t) is strictly in the orbit’s plane, the maximum of electric field must be parallel to the 

orbit’s plane (but perpendicular to a(t)). The effective time of emission restricts the length (le along 

x direction), and the effective cross-section Se is a surface in the orbit’s plane within which the 

charges are accelerated. So, the soliton’s volume is Ve=Sele , and hωnk corresponds to energy lost 

by the hydrogen atom. Something more, all energy losses of the atom can be transferred (in 

vacuum) at a very large, unrestricted distance. This means that the total photon energy (in volume 

Ve) moves in direction perpendicular to the orbit’s plane.  

These properties of the photon and the hydrogen atom are not trivial and they must be 

examined in more details. If the solitons with these properties exist in nature, then the transitions 

in a hydrogen atom must take a time te = 1/2ωnk=λ/4πc, and an atom in an excited state must be 

comparatively stable.  

II.4. The Shape of Acceleration and the Shape of Electromagnetic Field of the Soliton. 

Fig.II.1 shows only an example of velocities and acceleration curves. These curves are not 

known exactly, because the shape of electromagnetic field of the soliton is also not known exactly. 

We know from the electrodynamics that the shape of the two curves must essentially coincide (in 

different units). The two curves can be symmetrical or not symmetrical, but independently of their 

exact shape, we can calculate the integral values of all necessary parameters. As it can be seen 

from (II.4), for n = 1 and k = 2 the effective path is equal to the Bohr’s radius 0r : 

 ≈== 0
0

2

2

r
me

Hnk
h 5.3x10-11m  

It is three times smaller than the distance between the two orbits (3 0r ). The real way of 

electron (L) probably is a spiral curve between orbits k and n, with a length L > 3 0r . So, one can 

make the assumption, that the gravity wave packet of photon is many times longer than the 

effective length of the electromagnetic particle-soliton. The energy of the soliton Jnk, as it must be, 

does not depend on the effective time te, but this time is essential for the shapes of the curves. 

  

II.5. The possible shapes of soliton curves. 

Most often the shape of soliton curve (with a form like a contour of a bell) [11] is described by 

the equation: 

E = (2E0/τ)sech[(t – x/v)/ τ]  (II.8) 
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Where τ is connected with the effective width (1/2ω) of the soliton’s electric field. It is not 

clear that the electromagnetic field of the soliton corresponds exactly to (II.8), but according to the 

definition, the electric field in the maximum of the curve (E0) and effective time (te) are related: 

E0te = ∫
∞

∞−

dttE )(   (II.9) 

The simplest electric field (E(t)) of the soliton in vacuum can be written: 

E(t) = E0
)/)(exp()/)(exp((

2

eiei tttttt −−+−
 (II.10) 

Also, E(x) must be: 

E(x) = E0 ))/)(exp()/)(exp((
2

eiei lxxlxx −−+−
 (II.10a) 

If the soliton’s electric field corresponds to (II.10), then the electron’s (a(t)) must have the 

same shape: 

a(t) = a0 )/)(exp()/)(exp((
2

eiei tttttt −−+−
 (II.11) 

Here a0 is the acceleration at the maximum (a0 ∼ E0) and  

a0te = ∫
∞

∞−

dtta )(  (II.12) 

The time ti (“own life time”) is the time from the moment of excitation of a solitary atom in 

state k up to the moment of disintegration (transition to a lower state, or decay).. The time (ti), and 

the distance (xi), can eventually contain many, but not necessary entire number of orbit’s lengths. 

The shapes of the two curves (II.10) and (II.11) should not be accepted as exact, but they must 

correspond to each other, since the equations (II.9) and (II.12) are exact by definition. On Fig.II.1, 

the velocity curve is described by V~ th((tI-t)/te), and the acceleration by a(t) ~sech((tI-t)/te).  

 II.6. Average Velocity of the Electron in Transitions (Quantum Jumps). 

 Knowing the effective length of a soliton in vacuum (le), and the effective path of the 

electron (Hnk), one can estimate the average velocity of an electron (vnk) when it travels the 

effective distance Hnk: 

Hnk = vnkte (II.13) 

 and 

le = cte (II.14) 

So, the ratio of the two velocities is 

vnk/c = Hnk/le (II.15) 

When a transition occurs between k = 2 and n = 1, this ratio is: 
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 vnk/c ≈  5.4x10-3 

The average effective velocity of the electron is about 3 orders of magnitude smaller than the 

speed of light.   

 

II.7. “When the Transitions Occur (“own life time”, ti= ?)”  

Bohr’s model concerns a solitary hydrogen atom with the most important initial conditions, 

m0Vnrn= nh . These initial conditions coincide with Bohr’s stationary states, which never decay. 

For a statistical ensemble of quantum systems, every individual hydrogen atom probably has a 

few different initial conditions from these of Bohr’s (different energy of excitation). Then the 

atoms are not in a stationary state and can decay. (To be more specific, I remember the law of 

radioactive decay, N=N0exp(-t/τ), which concern a statistical ensemble only. The majority of 

scientists transform this law in probability (W) that a solitary object does not decay during a time 

(t): W= exp(-t/τ)=N/N0).  

A return to the real unitary field-particle of de Broglie and to Bohr's model of hydrogen 

atom. Gravity waves in hydrogen atoms are such that in the stationary state the mass of the 

electron (m0), its velocity Vn  and orbit radius rn are related with the principal quantum number (n) 

according to: 

m0Vnrn= n
π2
h  = nh                                               (II.16) 

The field-particle (electron) is in the potential well of a gravity wave, which keeps the electron in 

orbit n, and the electron cannot be accelerated (does not emit a soliton together with its 

corresponding gravity field). The length of gravity wave exactly satisfies the condition: 

  n
n

n n
Vm

nhr λπ ==
0

2                                                  (II.17) 

The equilibrium between Coulomb force, gravitation force, centrifugal force and positive 

interference of gravity wave cannot be destroyed, and without an external perturbation, a 

soliton cannot be emitted. External perturbation is not necessary for decay of atom. Suppose 

that energetically excited the electron can randomly occur at any distance (rni) close to the exact 

radius of the stationary orbit ( nni nr λπ ≠2 = 2πrn). Such “Initial conditions” are different for 

different atoms. The difference between the trajectory of the electron (2πrni) and nλ n  can be very 

small, yet – the destructive interference leads (after some time, ti) to a transition to a lower state. 

Imagine the gravity wave of the electron and the proton interfere as long as the minima of one 

wave coincides with the maxima of the other wave so that the amplitude (G(t)) of the interfering 
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gravity waves becomes ( ) 02 =tG . This state is not allowed [17], acceleration occurs and the 

photon energy is emitted as explained previously. The larger the difference nni rr − , the smaller 

the time necessary for destructive interference. If nni rr − →0, the energy corresponds almost to 

the energy in a stationary state) the time for destructive interference would be very long. When the 

radial co-ordinates coincide (rni = rn) (Bohr’s initial condition), a true stationary state would be 

established and without an external perturbation, this state could not decay. So, it is evident that the 

electron can be excited so, as to occur at all possible distances (rni) from the proton.  

 

II.8. Own Lifetime of a Single Hydrogen Atom. 

 

 
Fig.II.2. A scheme of a hydrogen excited states. Wave-particle of the electron and its 

interference; a) true stationary state; b) almost stationary state. 
 
 In Fig.II.2 a schematic wave-particle in some excited state of the hydrogen atom is shown. In 

Fig.II.2a) the velocity of the electron Vn is such that λ n  and rn correspond exactly to Bohr's 

condition: 

                            
n

n Vm
h

0

=λ  (II.18) 

 

Such wave electron-proton returns (each time it makes a period) with the same phase and repeats 

its motion for an infinitely long time. If the velocity of the electron (V) is slightly different, the 

new λ will also be slightly different (compared with nλ ): 

                         
Vm

h

0

=λ  (II.19) 

Such wave electron-proton would arrive (each time it makes a period) with a slightly different 

phase. With time, this phase difference increases. The moment when the sum of the amplitudes 
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becomes zero (for the first time) can be calculated; electron-proton are no more in the potential 

well. The moment this occurs defines the own lifetime (ti) of this excited atom. The sum of the 

amplitudes of electron-proton gravity wave can be written (like for classical particles, [17]): 

              ( ) ( )





+






 −= VtrVttG

λ
π

λ
π 2sin2sin)(  (II.20) 

Here r is the new radius, which is only slightly different from rn. The relation between wave length 

(λ ), frequency (ω ), and velocity (V) is: 

                           
ω
πλ V2

=  (II.21) 

Substituting (II.21) in (II.20) gives: 

                      ( )t
V

rttG ωωω sinsin)( +





 −=  (II.22) 

In Bohr’s model, r/V = 1/ω , therefore (II.22) becomes 

                        ( ) ( )tttG ωω sin1sin)( +−=  (II.23) 

which is the sum of the gravity wave amplitude, (G(t), (de Broglie's amplitudes) expressed by the 

time and the frequency of a not-exactly-stationary state. From (II.18) and (II.19) the small 

differences ∆λ  and ∆ω  are found ωωω −=∆ n ): 

                         
ω
ω

λ
λλ

λ
λ

∆
=








−=

−
=

∆ 1
n

n

V
V  (II.24) 

Taking into account that in Bohr's model  
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n

n

nnV
V

ω
ωω

ω
ω ∆+

==  (II.25) 

from (II.24), the gravity frequency ω  (different from stationary gravity frequency ω n) is found: 
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
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The moment (ti) when 02 =G  has to be found: 

                        ( ) ( ) 0sin1sin)( 22 =+−= ii tttG ωω  (II.27) 

Hence 

                        ( ) ( )ii tt ωω sin1sin −=−  (II.28) 

or 

ω2
1

=it  (II.28a) 



 29 

So, substituting the “non-stationary-frequency” (ω≠ωn) from (II.26), gives the needed 

"own lifetime" (ti): 
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

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 (II.29) 

This is the time for which the electron-gravity wave stays at some orbit and electron cannot be 

accelerated.  As it is seen, when ω=ω n  (∆ω=0), the time is ti→∞, as it should be for Bohr’s 

stationary states. For ∆ω<<ω n , the expression for the time (II.29) is symmetric (for positive and 

negative ∆ω ). It is more convenient to transform (II.29) in terms of the energy ( J∆ ): 
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
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


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=

112 3

n

i

J
JJ

t h  (II.30) 

where the energy can be measured in units eV and h  [eV.s]. The energy of the different excited 

states can be expressed through the Rydberg’s constant (R). Thus, the own lifetime of each single 

excited hydrogen atom depends on the small energy difference (∆J) and the principal quantum 

number (n): 

                     











−

∆
+∆

=

112 3
2

R
JnJ
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h  (II.31) 

In the case when RJn <<∆2 , the denominator can be expanded in series, and taking only two 

first terms of the expansion (1+ 2n ( ) RJ 3/∆ ...) to give: 

                    
( ) 222

3
nJ

Rti
∆

=
h  (II.32) 

Part of the results are shown in the Fig.II.3 (for h=6.59x10-16 eV.s and R=13.595 eV). These 

curves are different for different J∆ (about excited states, Jn). They could be compared with the 

normalised "own lifetimes" of the nuclei ([21,23] and Fig.II.5). 

“The own lifetime” (ti) of a solitary hydrogen atom (published 1999 [21]) and that of a 

nucleus (1971, [23]) depend on the possible initial ∆J, which can be different for different solitary 

quantum systems. For a hydrogen atom, ∆J depends on the initial co-ordinates and momenta of 

electron-proton system. Because the “own lifetime” of a nucleus [23] also depends on ∆J, it can be 

assumed that the initial conditions for the nuclei are also the initial co-ordinates and momenta of 

the particles as in the classical mechanics. 
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Fig.II.3. Time (ti) versus energy (∆Jx10-4[eV]) for n=2,3 and 4. These curves are 

symmetrical to the curves for energy differences (- J∆ ) to the left of zero (Jn ) Its can be 
compared with Fig.II.5 [23]. 
  

These exact calculations contradict the uncertainty principle.  The energy of a single hydrogen 

level is exactly calculated. The readers are forced to choose between the inherent in science 

(from Copenhagen school) uncertainty principle, and the inherent in Nature gravity energy. I 

choose the inherent in nature gravity energy conservation in any elementary interaction of particles 

(in spite of the negligibly small gravity energy).  

 The time (ti) cannot be measured experimentally (except in the case for resonant Mossbauer 

transitions in nuclei (natural width of the first excited state), [23]). Real experiments with hydrogen 

measure only the mean lifetime (τn) of an ensemble of excited atoms. The statistical natural width 

( nΓ ), and the mean life times (τn ) of the levels (for different excited states) of an ensemble of 

hydrogen atoms will be found and compared to the reference data. Let us assume that N0 [cm-3] 

atoms (“thin target”) are irradiated by a flux of photons with uniform energy distribution 
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)(JΦ  = Φ0[cm-2s-1] = const. (in the region of some quantum level n). If the effective cross-section 

of excitation is σE, then, the change in the excited level population can be expressed as: 

                   ( ))/exp(1)( 00 nE tNt
dt
dN τσ −−Φ=   (II.33) 

As it is well known, after the irradiation stops, the activity changes with time in the following 

way: 

                     ( ))/exp()( 00 nE tNt
dt
dN τσ −Φ=   (II.34) 

On the other hand, the differential cross-section ( Edσ ) is: 

                     
( ) 22

0

4 n

n
E J

dJ
d

Γ+∆

Γ
=

σ
σ   (II.35) 

(σ0 is the cross-section at the maximum; Γn is the statistical width of level (n)). Then the 

integral cross-section ( Eσ ) will be: 

                       
2

0πσ
σ =E   (II.36) 

Substituting (II.36) in (II.34) gives the change in the excited state population with time after 

excitation: 

                     ( ))/exp(
2

)( 0
0

0 ntNt
dt
dN τ

πσ
−Φ=   (II.37) 

Under the same conditions, but using the differential cross-section (II.35), shows how the 

excited state population ( )J
dt
dN  increases with irradiation time: 

                 ( )
( )

( )( )n
n

n t
J

dJN
J

dt
dN τ

σ
/exp1

4 22
000 −−
Γ+∆

ΓΦ
=   (II.38) 

To derive an expression for this activity after irradiation, from (II.32) the variation of the “own 

lifetime” with energy (J) is: 

                               
( ) 23

3
nJ

RdJdti
∆

=
h   (II.39) 

Because of the symmetry of (II.32), with respect to the energy, within the time interval (dti) 

the atoms decay in the two intervals ±∆J on both sides of Jn: 

( ) ( ) ( ) 232323

633
nJ

RdJ
nJ

RdJ
nJ

RdJdti
∆

=
∆

+
∆

=
hhh   (II.40) 

 

or    
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( )
R

dtnJ
dJ i

h6

23∆
=   (II.41) 

 
Substituting (dJ) in (II.38) gives the activity of hydrogen atoms after irradiation: 

                    ( ) ( )
( )( ) RJ

dtnJN
J

dt
dN

n

in

h64 22

23
000

Γ+∆

∆ΓΦ
=

σ
      (II.42)  

Two expressions for the activities are found: (I.42) depends on the energy of excitation ( J∆ ), 

and (II.37) depends on time (t). In the experiments, the two activities (II.42) and (II.37) must be 

equal: 

( )
( )( ) RJ

dtnJN

n

in

h64 22

23
000

Γ+∆

∆ΓΦ σ
= ( ))/exp(

2 0
0

0 ntN τ
πσ

−Φ   (II.43) 

In the specific case when exp ( )nt τ/− =1/2, then J∆ =Γn / 2 (Fig.II.5), and the expression 

(II.43) becomes: 

π=
Γ

R
dtn in

h24

22

  (I.44) 

Hence, the natural width (Γn) of a statistical ensemble of atoms (per unit time interval, dti=1) can 

be calculated as: 

        R
nn hπ241

=Γ   (I.45) 

Fig.II.4. Natural width of the level of hydrogen statistical ensemble (n=2,3,4). Horizontal 
scale in absolute units [eV]. 

The population of a statistical ensemble and the natural level widths (normalised at the 

maximum) are shown in Fig. II.4. It is easy to derive the mean lifetime of all excited atoms (at 

level n): 
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R

n
n

n π
τ

24
hh

=
Γ

=   (II.46) 

Thus, to calculate the mean lifetime of a statistical ensemble of excited hydrogen atoms at 

level (n), only Rydberg's constant (R) and Planck's constant (h ) are needed. The corresponding 

decay constants (Einstein’s coefficients of spontaneous emission An) are An=1/ nτ .  

 

II.10. Comparison with Reference Data (Only Experimental Data Exists).  

The numerous reference tables on hydrogen (only experimental data exists) give quite 

different values for τn  (especially for low binding energies of the excited states; n>2). In Table II.1 

the experimental data from [24] (1966) and [25] (1986) is compared to the calculations presented 

above (formula II.46, published [21], 1999).  

 
Table II.1. The values of τn =1/An  from the present paper (1999) are closer to the values of 

data in column ([25] 1986). The difference between experimental data from column [24] (1966) 
and [25] (1986) are impermissible. 

 

Data  references 

[24]  1966 [25]   1986       [21]  1999 

n τn, s An, s-1 τn, s An, s-1 τn, s An, s-1 

2 2,12.10-9 4,7.108 1,60.10-9 6,25.108 1,60.10-9 6,23.108 

3 10,0.10-9 1,0.108 3,94.10-9 2,53.108 2,40.10-9 4,15.108 

4 33,0.10-9 0,3.108 8,00.10-9 1,24.108 3,20.10-9 3,12.108 

 

As it can be seen, for the second excited state (n=2) the calculated τn  is equal to 1.603x10-9 s, 

while in ([24],1966) this time is τn =2.127x10-9 s and in ([25],1986) τn =1.60x10
-9

s. So, the result 

from the present calculations (1999) is in excellent agreement with the reference data (1986) 

(for n=2). It is necessary to stress that my calculations give values closer to the values from 

([25],1986). The differences between the experimental values of [24] and [25] are greater than the 

differences between the actual calculations and the experimental data [25], (1986). So, Bohr’s 

model (complemented with de Broglie’s-Bohm’s ideas) continues to describe hydrogen properties 

(mean lifetime, natural width of the levels) as exactly as Bohr’s hydrogen model describes the 

frequency of radiation and Rydberg’s constant. 
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Fig.II.5.Time (t/τ ) versus energy of excitations ( nJ Γ∆ / ) and normalized natural width of 

the first excited state (in nucleus [21,23]). When the decay moves from the wings of the level 
( J∆∞a ) to the energy 2/nJ Γ=∆ , half of the excited atoms have decayed and 
exp(−t n/ τ )=1/2. 

 
 II.11. Inconsistencies in the Reference Data. 

As it is known, the experimental accuracy of the frequency measurements is much better in 

comparison with the accuracy of time measurements. An attempt to explain the large differences in 

the reference data [24, 25] will be made. Experimental results are good only for the first excited 

states. The mean lifetimes (up to now) are determined only experimentally. There is not a suitable 

theory. The experiments are comparatively exact for n = 2 only. The differences between the 

reference data (for n > 2) are caused by experimental difficulties and incorrect application of the 

relation between Einstein's coefficients, which is explained in [21, 26, 27]. 

In [24], the transition probability for spontaneous emission from an upper state k to a lower 

state i, Aki, is related to the total experimental intensity Iki of a line of frequency νik  by  

kikkiki NhAI ν
π4
1

=  (expression (1) on page ii of [24])  (II.47) 

where h is Planck's constant, and Nk the population of the state k. It was shown in [21, 27] that this 

relation holds for transitions from any excited state k to the ground state i only. If (i) is also an 

excited state, then relation (II.47) becomes: 
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 Iki = 
1

4π (Aki +
g
g

i

k
Aix)h ikν Nk  (II.48) 

where Aix is the full decay constant of level (i) and gi, gk are the corresponding statistical weights. 

Only when Aix=0 (ground state), (II.48) coincides with (II.47). The same applies for the transition 

probability of absorption Bik, and the transition probability of induced emission Bki, in [24]: 

Bik=6.01 ki
i

k A
g
g3λ      (expr. (6), p. vi of [24])  (II.49) 

Bki =6.01λ3Aki         (expr. (7), p. vi of [24])  (II.50) 

(λ  is the wavelength in Angstrom units). When (i) is an excited state, these relations are also 

wrong. According to [21, 27], these relations (in the same units as in [24]) become: 
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                 Bki =6.01 
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It is also seen that if (i) is a ground state, 0=ixA , these relations correspond to the relations in 

[24]. It is clear that even based on experimental results (when n > 2), τn  can have wrong values if 

expressed using the inappropriate (but commonly accepted) relations. 

 The mean lifetimes of excited levels of the simplest atom - hydrogen - obtained herein are in 

surprising agreement with the known data. At the same time, the differences between the reference 

values for n>2, shows that all reference data for transition probabilities in hydrogen must be 

critically examined and adjusted accurately according to the present results (formulae II.46, II.48, 

II.51, II.52). For the first time, experimental results for the mean lifetime of a hydrogen 

statistical ensemble are compared with theoretical calculations (obtained with a set of initial 

conditions for a solitary hydrogen atom). The mean lifetime (τn ) is a characteristics only of a 

statistical ensemble of excited atoms.  

If a transition occurs between two excited states (Jn = R(1/n2) and Jk = R(1/k2), the frequency 

of the emitted photon is calculated according to: (Jn - Jk)/h  = ωnk. The energy spread of many 

photons (Γnk) is the sum of the statistical level widths of many atoms: Γnk = Γn+Γk. So, for a 

statistical ensemble of hydrogen atoms, the distances of electrons from the protons (or energies) 

are very different. In such an ensemble the probability to find an electron at some from the proton 

has a maximum at the position of Bohr’s stationary orbits. This probability is smaller at other 

places, but never becomes zero. For the co-ordinate systems related to the centre of mass of each 

hydrogen atom, these probabilities are presented on Fig.II.4 (natural widths). For a laboratory co-
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ordinate system, the probabilities depend by the motion of the centre of mass at different velocities 

(Vi) (temperature) and different λi=h/((M+me)Vi). The results are consistent with the experiments. I 

think that all these solitary objects contradict the Copenhagen’s interpretations, but do not 

contradict Bohm’s and de Broglie’s point of view.  

To pay honour to Luis de Broglie who wrote: 

“In the spring of my life, I was obsessed with the problems of quanta and the coexistence of 

waves and particles in the world of micro-physics: I made decisive efforts, although incomplete, to 

discover the solution. Now, in the autumn of my existence, the same problem still preoccupies me 

because, despite of the many successes and the long way passed, I do not believe that the enigma is 

indeed resolved. The future, a future which I undoubtedly will never see, will probably resolve the 

problem: it will tell whether my present point of view is an error of an already sufficiently old man 

who is still devoted to the ideas of his youth, or, on the contrary, this is a clairvoyance of a 

researcher who all his life has meditated on the most important question of contemporary 

Physics”. (L. de Broglie, Certitudes et incertitudes de la Science, Edition Albin Michel, Paris, 

1966, p. 22; a free translation from French). 

It is clear that the photon-soliton properties obtained here, and the new initial conditions, are 

not all necessary initial conditions needed to explain other properties of the soliton, hydrogen and 

heavier atoms. It is also clear that Bohm’s and de Broglie’s point of view cannot be further 

neglected despite that their concepts require more intellectual efforts to solve the simplest 

(but most basic) questions “beyond the Quantum Physics”. 

 

III. SPACE-TIME CORRELATED (ENTANGLED) PHOTON-SOLITONS 

In the last years of the twentieth century, many theoretical and experimental works 

dedicated on the two-particle entanglement were published. The experiments with 

photons confirm the standard theory. Some wrongly interpreted experiments confirm 

non-locality. The contemporary interpretations permit one of the correlated photons to 

influence its twin-brother instantaneously at a very large distance. This illusion is 

possible because the two photons have a common wave function that cannot be 

separated. I hope to show that the common wave function of the two photons describes 

only the possibility of photon propagation in space. The real gravity waves of the two 

photons are independent, correlated solitons (particles) that must act in different ways.  

Also, signals cannot be sent faster than light velocity.  
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III.1. Solitons, Gravity Wave and Common Wave Functions.  
 
We shall assume the electromagnetic field of the soliton to be described by the 

function, E(t,x) = E0sech((t-x/c)/te) (II.10, II.11). Because nothing is known about the 

shape of the gravity field, I assume G(x,t) ∼ E(t,x) and will use some other  logical 

assumptions as well:  

a) The gravity field volume is Vg=Sglg ≥ Ve=Sele; 

b) In spite that solitons and gravity fields have tree dimensions, expanded gravity 

fields satisfy the common wave function ϕ = Acos(ω(t-x/c)). (x is the axis of soliton 

propagation (Fig.I.2) and A is a normalized constant);  

c) Gravity field is G(t,x) = G0sech((t-x/c)/tg) (G0 ∼ E0). The plane of polarization 

coincide with the maximal electric vector E0.  

d) The gravity field effective volume is many times larger than the electromagnetic 

effective volume (Sglg>> Sele), but for simplicity (in the beginning) I accept that 

(independently of the large difference in their energy density), the two volumes 

coincide, and  (Se=Sg; le = lg).           

As it will be seen later, these approximations are not essential. If it is assumed that 

the gravity wave function is proportional to the electric field of soliton and a common 

wave function, then space-time gravity wave functions of one photon must be: 

 
ϕg(t)∼E(t,x)cos(ω(t-x/c))       (III.1)  

ϕg(x)∼ E(t,x)cos(2π/λ)(x-x0))      (III.1a) 

When E(t,x) ∼ G(t,x) and x0 is the distance between the source and the detector, then 

the initial time of emission is t0= x0/c, and (III.1) becomes: 

ϕg(t) = G0sech(2ω(t-t0))cos(ω(t- t0))     (III.2) 

and, 

 ϕg(x) =
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  (III.3) 

 

Here E0 = K1/2ω3/2 ∼ G0. For G0=1, the function ϕg(x) is shown on Fig.III.1.  
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Fig.III.1 One spontaneously emitted soliton: a) Shape of the soliton – larger line 
at x=0; gravity wave function – thinner line at x=0; common wave function – dotted 
line b) Solid line – real gravity wave function of one emitted photon-soliton around 
zero amplitude. The position of the soliton is marked with an arrow. 
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Expression (III.3) gives the symmetrical gravity wave function of any 

spontaneously emitted separate (solitary) photon. Two spontaneously emitted photons 

(even with equal energy, frequency and polarization) cannot be described with one and 

the same common wave function (ϕ(x) or ϕ(t)) because they are emitted from different 

points (charges), have different directions, different initial times (t0), and different 

positions in space.  

 
The stimulated photons are the first that are correlated by common wave 

functions (cos(ω(t-t0)) and cos((2π/λ)(x-x0)). For two stimulated photons the gravity 

frequency, direction, and fixed polarization exactly coincide, and the phase shift between 

first (stimulating) and second (stimulated) photons is always constant - π [27,28]. In time 

(or space) the superposition of two successively emitted stimulated photons can be 

represented:  

ϕg(t)= (sech(2ω(t-t0))+sech(2ω(t-t0-π/ω)))cos(ω(t-t0))    (III.4) 

ϕg(x)= (sech(4π(x-x0)/λ)+sech(4π(x-x0)/λ-0.5))cos(2π(x-x0)/λ)   (λ=1)  (III.4a) 

 
For x0 = 0, the superposition (III.4a) is shown on Fig.III.2. This is a real gravity 

wave superposition of photons correlated in space and time. The correlated double 

gamma-quanta where observed in the very precise experiments of Davidov’s group 

(Russian, [29]) and explained in [28]. These experiments show that the two gamma-

quanta interact independently: if the probability for registration of a single gamma-

photon on a detector is (ε), then the probability for registration of two photons 

simultaneously on the same detector is ε2, and the registered energy is twice higher. If 

two detectors are positioned one after the other at a distance d0, and the probabilities for 

registration correspond to ε1 and ε2, then the common probability for registration of two 

photons (on different detector) is ε1ε2. The energy registered on each detector is equal to 

the energy of one photon. The time interval between the registration of each photon will 

be ∆t=d0/c.  

I must emphasize that although the two solitons (and gravity waves) are coupled 

strongly and described by a common wave function, they can act in different ways in 

time, independently from each other (for example the first producing a photo-effect, the  

second  – Compton effect). 
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Fig.III.2 Stimulating (arrow at x/λ=0.5) and stimulated photons (arrow at x/λ=0): 

a) solid line – real gravity wave; dotted line is common for the two soliton wave 
function.  b) The gravity wave function around zero amplitude is very long. The 
arrows show the positions of the stimulated and stimulating solitons. 

 
А small part of a mirrorless laser beam with a few correlated photon-solitons is 

shown on Fig.III.3. The enveloping common wave function shows that in some places 

the number of solitons is smaller than in other places and multiplication grows at the end 

of the active media. In a mirrorless laser beam, the first soliton remains solitary and the 

average number of photons grows at the end. As it is known from experiments [30] – 
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(many photons photo-effect) - when the energy of N photons (solitons) at a maximum 

(|cos(ωt)|) is sufficient for ionization (J), then the photo-effect becomes possible 

(Nhω≥.J). These solitons can interact simultaneously in spite that λ≥λ0 (λ0 is the 

ordinary maximum characteristic limit for the photo-effect in corresponding medium). If 

many solitons occupy the same maximum in a common wave function, then they can act 

simultaneously. From experiments [30] it is clear that they don’t have to always act 

simultaneously.  

 
Fig.III.3: A short beam from a mirrorless laser with very small amplification: 

from one photon in initial position (t=0) to an average of about 10 photons at the end 
(the relative amplitude shows the number of photons). The common wave function – 
doted line - is the same as in Fig.III.1 (and III.2). The first maxima are partially 
empty. Population inversion medium is to the left of zero. 

 

In an ordinary laser the mirrors reflect many times solitons and its average number 

in every maximum of the function (|cos(ωt)|) is constant. If a larger number of photon-

soliton is absorbed, the remaining photons are described by the same common wave 

function (Fig.III.3). This is used in many experiments (where coherent photons with very 

low intensity are necessary).  

When a classical antenna emits photons, the situation is different from lasers. 

Because of synchronization of charges movement (in metals free electrons around 

positive ions), the charges emit single photon-soliton in a random direction. At a remote 

point of observation (in comparison with the length of the antenna) many photons arrive 
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from slightly different directions and continue to propagate in different directions. They 

cannot be exactly correlated in space and time. Because the frequency and polarization 

of photons can be one and the same, this correlation is possible as an approximation only 

(at large distance from the antenna and in a relatively small region in space). Classical 

electromagnetic waves are an approximation of the photon properties only. 

 
 

Fig.III.4. Two space-time correlated solitons: the double solid line (at x=0) 
represents two gravity waves of solitons at a distance x=0.2λ from the charges; the 
gravity waves at distance x=±4λ (solid) and the common wave function - doted 
line.  
 

III.2. Space-time Correlation of Two Particle-Solitons Propagating in Different 

Directions. 

At the end of the last century, the technology of some special crystals excited with 

laser beams allows the receiving of two space-time-correlated photons. They are created 

in the same small volume (almost a point P0 in comparison with le< λ), propagate at the 

speed of light in different directions and can be described by a common wave function. 

In the case when two solitons are simultaneously created at point P0=0 on axis x (due to 

the laser pumping) and the two waves propagate in positive and negative directions, the 

common wave function is: 

ϕ(x)=(1/2)(cos((2π/λ)(x-x0))+cos((2π/λ)(-x-x0)));    (x0 = ct0)      (III.5) 



 43 

The real gravity wave containing two solitons with equal polarization is: 

ϕg(x)=(1/2)(cos(2π(x-x0)/λ)sech(4π(x-x0)/λ)+cos(2π(x+x0)/λ)sech(4π(x+x0)/λ))  ( III.6) 

The positions of the two photons with a common wave function are shown on Fig.III.4. 

The two particles (solitons plus gravity fields) move always together at the phase 

velocity of the common wave function maximum (in Fig.III.4 for solitons at x=±0.2λ 

this is not shown). 

 III.3. Spin of the Photon and Other Possible Properties? 

It was accepted that the plane of polarization of soliton is defined by the maximum 

electric vector, E0∼G0. If a solioton is created by charges similar to the hydrogen atom, 

then the electric field E(x) is slightly torsion with respect to the plane of polarization. 

According to classical electrodynamics, E(x) must be simultaneously perpendicular (in 

later moment, x/c) to the charge acceleration vector and the vector of propagation. The 

last vector coincides with the x-axis.  So, the vectors E(x=0) and E(x=le=λ/4π) have to 

make an angle Ω, when looking in direction perpendicular to the orbit plane (Fig.III.5). 

Probably the soliton can be emitted in one or in other direction with respect to the 

orbit plane and the sign of the torsion angle (Ω) will be left or right. I must emphasize 

that the angle between vectors E(le) and E(0) is constant in space and time. The 

polarization (plane of vector E0) is also constant. The electric field does not rotate in 

space about the x axis because the emission of the electric field stops together with the 

charge acceleration, and the vector E0 preserves its direction (in the space).  The angle 

(Ω) can be calculated using the effective path, Hnk: 

Hnk=(h2/e2m0)/(1/2n-1/2k), 

which is in the orbit plane. The distance le (perpendicular to orbits plane) is: 

 le = cte=c/2ω = 
1
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where le is the effective length of the soliton in space. For the period te=1/2ω from 

acceleration vector a(x) (perpendicular to radius in point Hnk=0) changes from a(0) to 

acceleration vector a(le) (perpendicular to radius in the end of Hnk (arrows)). Somewhere 

between these two points must be found the maximal acceleration vector a0. From 

Fig.III.5 the torque of photon for transition (k,n) must be:   

Ωnk(le) = Hnk/ le = (e2/ch)(1/2n+1/2k)     (III.8) 
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Fig.III.5: Up) Schematic view perpendicular to orbit’s plane: r0, r4 – two orbits 

(n=1;k=2). Transition trajectory – doted line with arrows. The photon can be emitted 
either in our direction or in the opposite direction. The angle, Ω - between the vectors 
a(0) and a(le) corresponds to (E(0), E(le)); effective path, Hnk – thick line. Vertical line, 
P - plane of polarization. In this plane the electron acceleration a0 has a maximum, 
and soliton has a maximum amplitude E0 (perpendicular to a0). Below: Schematic view 
parallel to the orbit and polarization planes. le=cte is distance between vector E(0) and 
E(le) (parallel to orbit’s plane) .  
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This probably is a very important result because Ωnk(le) may be connected with the     

spin of photons, and (e2/ch)=α ≈ 1/137 is the well known universal constant – the fine  

structure constant.  

When n=1, k=2, Ωnk(le)  ≈ 0.00547 rad or Ωnk(le) ≈ 1.97o. (Compare with the results 

for the ratio between the average velocity vnk and the speed of light c (II.15)). From 

(III.8) follows: 2Ωnk(le) = (e2/chn)+(e2/chk) = Ωn+Ωk;  Ωn=(e2/chn);  Ωk=(e2/chk).  

The corresponding electron velocities are: Vn=cΩn=(e2/hn) and Vk= cΩk=(e2/hk). So, 

the spin of a photon (Sph) must be the difference between the angular momenta of two 

states of the hydrogen atom:  

Sph= (e2/hk)rkm0 - (e2/hn)rnm0 = (k-n)h     (III.9) 

Probably the gravity field is parallel to the electric field, and the torque angle is the 

same Ωnk(le). When the soliton is emitted in a direction which is different relatively to 

the orbit plane, then the torque, Ωnk(le), and spin (Sph) (vectors) must be opposite. 

 

III.4. Soliton Electric Field and Gravity Field.  

Here I will discuss different (new) possibilities of a photon structure. The results of the 

following paragraph are only some guessed properties of the photons and must not be 

assumed real. They show only that the relative dimensions and the shape of the soliton 

and gravity fields are not essential and cannot change the common properties of 

photons. It becomes possible for the volumes of the electromagnetic soliton and the 

gravity field to no longer be symmetrical and equal in the space. After the maximum 

acceleration (a0), the velocity of emitting charge is larger than before acceleration a0 

(Fig.II.1). The required time to travel a distance (X1) between E(0) and E0 is larger than 

the required time to travel a distance (X2) between E0 and E(le). So, X1<X2, but (by 

definition, part I), we always have X1+X2=le. Even if E(t) is a symmetrical function with 

respect to it center E0, the function E(x) is larger in the direction of propagation, than in 

the opposite direction (with respect to E0∼a0). The volume of the gravity field (Sglg) is 

probably many times larger than the volume of the electromagnetic soliton (Sele). One 

example of asymmetrical soliton (X2=2X1) and gravity field length lg=10le is shown on 

Fig.III.6. 
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Fig.III.6. Asymmetric soliton (electric field) - dot line around x=0; gravity field - 
dot-dash line; gravity wave function - solid line; common wave function – dot line.  
 

The difference with Fig.III.1 can not influence our investigations and now we cannot 

decide how many times the gravity volume is greater than the soliton volume. One may 

think that the ratio between the gravity volume and the soliton volume is inversely 

proportional to the energy density of soliton (ρs), and the energy density of the 

corresponding gravity field (ρg):  

(Vg=Sglg)/(Ve=Sele)~ρs/ρg.         (III.10) 

 The energy of the gravity field is many times smaller than the energy of the electric 

field: 

Vgρg<< Veρs         (III.11) 

Fig.III.6 is only an example; it brings another point of view; it is not essential, but it 

is shown for better understanding that not all photon-soliton properties are precisely 

known. As it is seen from the comparison of Fig.III.1 and Fig.III.6, in the second Figure, 

the gravity waves get ahead of and drop behind the electromagnetic soliton at different 

rate, which depends on the ratio lg/le≥1. Expression (III.10) allows calculating ρg if the 

gravity volume (lgSg) can be estimated (or vice versa). This allows for better 
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understanding of interference experiments [31-33], problems in books [34,35] and better 

(visual) understanding of experiments like these of Alley [36, 37]. 

 The simplest scheme of Alley’s experiments is shown on Fig.III.7. It represents 

an interferometer with two branches. The first mirror (1) splits the photon beam (N0) in 

two, with equal photon number (0.5N0) in each branch. In the “empty” branch 

propagates only the gravity wave. The mirrors 2a and 2b reflect almost completely the 

gravity waves, and the mirror 3 is semi-transparent. The sum of registered photons at the 

two outputs must be equal to the number N0 (neglecting absorbed photons). The authors 

made many interesting experiments, but I choose only one result, which is very 

important for me. If the optical path difference (in two branches) is smaller than the 

photon length of coherence (effective gravity wave length), and the output distance from 

mirror (3) to detector D2 is a multiple of λ/2 but the output to detector D1 is a multiple of 

λ, then the detector D1 must register N0 photons and detector D2 zero photons. This 

was observed experimentally. In the direction of detector D2, the gravity amplitude of de 

Broglie’s wave (because of destructive interference) becomes zero, and contrary, the 

gravity amplitude of the wave in the direction of detector D1 (because of constructive 

interference) becomes greater (compared to a separate gravity amplitudes). So, the 

solitons pass only towards the detector D1. The particle (soliton) does not exist at 

positions of zero gravity amplitude (compare this with the electron in an excited state of 

hydrogen, part II). The mirror 3 becomes completely transparent for photons in branch 

1b, and completely reflecting for photons in branch 1a. In this way it must be accepted 

that the soliton gravity wave can be split, scattered or absorbed by other particles. 

Gravity waves can exist and act independently of the particles and their infinitely feeble 

energy can be transferred to other particles and cannot be observed at present. The 

described experiments are probably indirect observations of gravity waves. The 

interference of gravity waves (like the “gloves” of solitons) is possible if the interfering 

parts arise from one and the same photon (self-interference). This must be accepted 

because in this case the conditions for interference are fulfilled: equal polarization, 

frequency, phase shift, torsion angle and common wave function. These conditions are 

fulfilled for different but stimulated laser photons.  
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Fig.III.7. a): An interferometer with two equal branches (1a and 1b). Outputs – 

towards detector D1 and towards detector D2 can be different (here output D1 is 
multiple to λ but output D2 is multiple to λ/2).  

b): Part of the interferometer around mirror 3. At the output towards detectors D1 
the interference of gravity waves is positive, and towards detector D2 (multiple to λ/2) it 
is negative. All input soliton-photons  pass toward detector D1. 

 

III.5. Executed and Not Executed Experiments. 

 Here I will discuss some already executed experiments with correlated photons and 

will propose new experiments beyond the contemporary quantum predictions (and 

expectations).  
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The following calculations are consistent with the known experimental results and 

confirm the assumptions that the photon, may be, consists of an electromagnetic particle-

soliton (not a point), and a gravity wave. The assumption that the photon is a soliton plus 

a gravity wave makes the correlated photons (twin-brothers) independent and separable 

from their mathematical common wave function. For example, when one of the photon 

is absorbed, then the other is no more correlated (but does not disappear). The real 

soliton is inseparable from it gravity wave package – the wave of de Broglie – because 

the energy of any particle includes the gravity field energy.  When the photon interacts 

with charged particles, its energy (electric, magnetic and gravity) changes intermediary 

soliton’s electric field.  

Beyond the contemporary experiments. With the help of two space-time 

correlated photons it becomes possible to perform the double-slit interference 

experiments in which the particle-soliton must pass obligatory only through one of the 

slits, but the gravity wave passes both opened slits (contradicting Copenhagen’s 

interpretation). My point of view shows an unexpected result: when one of the twin 

brothers (soliton) is obliged to pass only one of the slits (two slits open), then the 

interference pictures are very good. Such experiment was impossible with ordinary 

photons. It is also shown that the “ghost” interference pictures are possible when one of 

the soliton pair passes a double-slit but other passes a transparent homogenous plate. In 

an executed experiment [31] instead of a transparent homogeneous plate, a 

“Heisenberg’s lens” is used. Some of the results obtained here are already confirmed 

experimentally, but the others expect to be verified in the experiments – contradicting 

some of the Copenhagen’s expectations.  

For experimental check, the theory of spontaneous parametric down-conversion 

(SPDC) is the most effective source of two-photon light, consisting of pairs of entangled 

photons (Dopfer, 1998 [31], Strekalov, 1995 [32], Zeilinger, 1999 [33]).  

The two entangled photons must make equal angles with the direction of the laser 

beam (pump) and must lie in the plane of the laser beam. Only in this case they are twin 

brothers: created in one and the same moment and position, with equal frequencies, 

constant phase shift and constant difference of polarization (E01 and E02). Here it is 

assumed that the correlated photons contain solitons with the properties described in this 

work. I analyze the two-slit interference of the space-time-correlated photons and show 

that the results of the calculations are consistent with the already known experimental 

data [31-33, 38-42]. New essential experiments are proposed.  
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III.6. Two double-slits with the two beams. 

On the Fig.III.8, a scheme of a simplified experimental arrangement is shown. The 

source (S) of spontaneous parametric down-conversion (SPDC) of correlated pairs is 

placed between two double slits (1) and (2) at distances L1 and L2. The direction of the 

laser beam (pump) is perpendicular to the plane of the Fig.III.8 at the place of the source 

on the axis (O,O). After the beam of photons passes the slits, the two photons can be 

registered by the detectors D1 and D2 at corresponding distances (r1 and r2) between the 

double-slits and the detectors. The difference from [31,33] is that we assume the source 

dimensions (S) to be small in comparison with the distances (L1,L2), and a standard 

Young’s interference picture could be observed after each double slit. In the following 

the possibility of Young’s interference observation is referred as a “point-like source”. In 

[31] the second double-slit is replaced with a “Heisenberg lens”. Later in this work, the 

“Heisenberg lens” will be replaced by a transparent parallel plate.  

So, as an ordinary source of spontaneously emitting photons, the two independent 

interference pattern can be observed (Young’s interference) by the independent detectors 

D1 and D2 (without coincidences). The interference pictures depend on geometrical 

arrangements of the two double-slit (1, 2), the distances (L1, L2, d1,d2) and the slits 

widths (a, b). For simplifier the calculations it is accepted a = b < λ = (2πc/ω). Using the 

classical assumptions [34, 35]  for interference of the waves and accepting that each 

photon contains an electromagnetic particle – soliton, which cannot exist without its real 

gravity wave (de Broglie’s λ) one can write for the amplitudes (A1 and A2) after the two 

double-slits (Fig.III.8).  

Young’s interference. When on the double-slits one of the slits is closed (no 

interference), then the amplitudes at the places of the detectors D1 and D2 (using complex 

representation [34]) are: 

A01(r1,ϑ1) = F1exp(-iωt1);        F1 = (1/r1) cosϑ1    (III.12) 

A02(r2, ϑ2) = F2exp(-iωt2);        F2 = (1/r2) cosϑ2    (III.13) 
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Fig.III.8. Two double slit interference. The arrangement is an enfolded version of 
the experiments described in [31]. The source (S) is a point in comparison with 
L=L1=L2. 

When the two slits are open, then the soliton can pass only one of them, but the 

gravity wave pass the two slits and interfere. The soliton can be found in some (and only 

one) direction (ϑ1, ϑ2).  The amplitudes of the gravity waves at the detectors’ positions 

are: 

A1 = F1exp(-iωt1)[(exp(-iωd1/2c)sinϑ1) + (exp(iωd1/2c)sinϑ1)]   (III.14) 

A2 = F2exp(-iωt2)[(exp(-iωd2/2c)sinϑ2) + (exp(iωd2/2c)sinϑ2)]  (III.15) 

One can make the substitutions: 

[(exp(-iωd1/2c)sinϑ1) + (exp(iωd1/2c)sinϑ1)] = C1 

[(exp(-iωd2/2c)sinϑ2) + (exp(iωd2/2c)sinϑ2)] = C2 

C1 = 2cos((πd1/λ)sinϑ1);    sinϑ1 = x1/r1      (III.16) 

C2 = 2cos((πd2/λ)sinϑ2);    sinϑ2 = x2/r2 

The interference pattern observed independently by two detectors will be: 

A22 = F2
2C2

2 = (1/r2)2cos2ϑ24cos2((πd2/λ)sinϑ2)    (III.17) 

A12 = F1
2C1

2  = (1/r1)2cos2ϑ14cos2((πd1/λ)sinϑ1)    (III.17a) 

These are the standard Young’s interference pictures observed behind the two 

double-slits. These pictures depend only on the  geometry of experiments (distances: d, r, 

λ and the variables ϑ). The registered photons can be both correlated twin brothers and 

not correlated photons. The conditions for distinguishing only space–time correlated 

photons are not fulfilled. 
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The correlated (entangled) photons. The pairs of correlated photons must be created 

simultaneously (t = 0) in some point of the source (SPDC), and must propagate exactly at 

equal angles with respect to the direction of the pump laser beam (in the same plane with 

the laser beam). In the enfolded version of the experiments (Fig.III.8), the correlated 

solitons are with anti parallel momenta, created in a point-like region. If one of the pair 

passe the slit 1a, then with probability equal to one its twin brother must pass the slit 2b. 

The sufficient conditions for this are: L1/L2 = d1/d2 and the source (S) and the centers of 

the two parallel double-slits must be at one and the same axis (O,O) (Fig.II.8). The two 

twin brothers must be registered simultaneously by the two detectors (D1,D2). The time 

elapsed between the moment of creation of photons (in S, point P0=0) and their 

registration by the detectors is not necessary for Young’s interference (III.17) and was 

not introduced. This time must be introduced for observation of correlated photons 

(coincidences). To simplify further the investigation, it is supposed that the distances 

between the source and the two double-slits (1, 2) are equal (L1 = L2 = L), and the 

dimensions of the double-slits are also equal (d1 = d2 = d). In this case one can be sure 

that when a photon passes the slit 1a, its twin brother passes the slit 2b and vice versa 

(Fig.II.8). One can write for the two identical amplitudes (including the time (t0 = L/c)) 

necessary for two twin brothers to reach the corresponding double-slit: (1/L)exp(-iωt0). 

The amplitudes at the two detectors are:  

AD1 = F1exp(-iωt1)C1(1/L)exp(-iωt0)      (III.18)

 AD2 = F2exp(-iωt2)C2(1/L)exp(-iωt0)      (III.19)

 The simultaneous amplitude of two twin brothers at the detectors is the sum 

(AD1+AD2). The probability for registration of photons (W12) is proportional to: 

W12 = AD1+AD22= [F1
2C1

2+F2
2C2

2+2F1F2C1C2cos(ω(t2 - t1))]/L2   (III.20) 

The two first terms of (III.20) are time-independent, and cannot be observed in 

coincidences. They correspond exactly to the case of a “standard Young’s interference” 

(III.17). The third term of (III.20) depends on the time difference (t2 - t1) and the 

coincidences can been observed only when  

(t2 = t1),  or    P = cos(2πc(t2-t1)/λ)  = 1;     (III.21) 

The period between the moment of creation of two twin brother-solitons, and the 

moment of registration of the first soliton by detector D1 is T1 = t0 + t1. This period for 

the second correlated soliton is T2 = t0 + t2 (D2). So, (t2 - t1) = (T2 – T1). The distances r1 

and r2 are related with the time:   

r1 = ct1;   r2 = ct2; and r1 = r2 = r  ( c – speed of light)   (III.22) 
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The conditions (III.21) and (III.22) are very strict because P can be represented also 

as the optical path difference between the two detectors: (c(T2 - T1) = ∆x). This leads to: 

P = cos(2π∆x/λ)        (III.21a) 

(For ∆x/λ=0, 1, 2…n,    P=1 and coincidences are possible). 

The optical path difference (∆x) can change by different causes: distances, very low 

acoustic waves and acoustic vibrations, temperature and thermal differences, optical not-

homogeneity and others. These can change the sign of the wave, but the interaction of 

solitons with charged particles does not depend on the sign.  

The optical path difference (∆x) can in principle be reduced to about 3 – 10 nm. In 

the discussed experiments [31, 32, 33], λ = 702 nm (∆x/λ → 0) and it is accepted in 

further calculations that P = cos(2π∆x/λ) ≈ 1. At the moment when c(T2 - T1) ≠ nλ , 

only chance coincidences could be observed. The probability of coincidences only is 

obtained by extracting (III.17 and III.17a) from (III.20): 

W12(ϑ1,ϑ2) =  8/(Lr)2cosϑ1cosϑ2cos((πd/λ)sinϑ1)cos((πd/λ)sinϑ2)P     (III.23) 

This is the counting rate of pairs coincidence. The two variables ϑ1 and ϑ2 are the 

corresponding angles between the direction of the detectors and the axis (O,O). The eq. 

(III.23) can be used practically only when one of the variables is fixed or when the two 

variables are equal, ϑ1= ϑ2= ϑ,   (8/(Lr)2 =constant = 1): 

W12(ϑ,ϑ) = cos2ϑ(cos2((πd/λ)sinϑ))cos(2πc(t2-t1)/ λ)   (III.24) 

Eq. (III.24) is normalized if we substitute cos(2πc(t2-t1)/ λ) = P = 1. It becomes: 

 W12(ϑ,ϑ) = cos2ϑ(cos2((πd/λ)sinϑ));     (III.25) 

When the two detectors are at the same position, (ϑ1= ϑ2 = ϑ), then the function of 

the coincidence counting rate corresponds to the standard Young’s interference. If one of 

the variable is fixed (f. e. ϑ2 = 0), then from (III.23) the probability for coincidences W1(

ϑ1) must have an interference pattern: 

W1(ϑ1) = cosϑ1cos((πd/λ)sinϑ1)P      (III.25a) 
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It can be seen from (III.23), that if one of the variables (f. e. ϑ2) is fixed at the 

position where cos((πd/λ)sinϑ2) = 0, then for any positions of D1(ϑ1) the coincidences  

do not exist (W1(ϑ1) = 0). The counting rate of D1, (without coincidences; point-like 

source) must be proportional to cos2(ϑ1)(cos2((πd/λ)sinϑ1)).  

 The probability (III.25) is the case when the coincidence counting rate is exactly that 

of Young’s interference picture. Although the difference between (III.25) and (III.25a) is 

very small, it  can be distinguished experimentally because:  

cos2ϑ(cos2((πd/λ)sinϑ))P ≠ cosϑcos((πd/λ)sinϑ)P. 

In the following illustrating Figures, these differences are shown. 

III.7. One double-slit and one single slit. 

 When the conditions for coincidences are  fulfilled (L1 = L2 = L; d1 = d2 = d), then 

the dimensions of the source (S) can be greater [31] in comparison with the conditions 

for Young’s interference because the pairs of correlated photon-solitons must pass the 

two opposite slits and the coincidences are possible only when the two twin brothers 

photons are created in a small region around the center of the source. A larger source is 

shown on Fig.III.8 with a dotted rectangle, but the effective source dimension (in 

coincidences only!) is the small region (in circle) about the point (S) determined from the 

experimental setup. 

 New proposed experiment. In the case of a “point-like source”, one can close the 

slit 2a and the coincidences will be possible only when a particle-soliton pass the slit 1a, 

because its conjugated twin brother must passes the opened slit 2b. De Broglie’s 

assumption that the real wave package of a photon is essentially larger than the particle 

(the gravity wave passes the double-slit) allows to find the two amplitudes, (AD1 and 

AD2). The amplitude of the wave after the double-slit 1 is the same, and the amplitude of 

the first photon is: 

AD1 = F1exp(-iωt1)C1(1/L)exp(-iωt0)     (III.26) 

Its twin brother soliton (and the wave) passes only the opened slit 2b, (C2 = 1),  and 

the amplitude (AD2) must be:  

AD2 = F2exp(-iωt2)(1/L)exp(-iωt0); (C2 = 1)   (III.27)  
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The corresponding square of the amplitude sum (III.26) plus (III.27) determines the 

probability:  

W = AD1+AD22= F1
2C1

2+F2
2+2F1F2C1cos(ω(t2 - t1)        (III.28) 

So, when one soliton pass slit 1a, its twin brother must pass the slit 2b only (C2 = 1). 

The gravity wave of the first soliton passes the two opened slits (1), but the gravity wave 

of the second soliton must pass only the opened slit 2b. This interference picture  depend 

essentially on the angle ϑ1 because after the single slit (2b), the angle ϑ2 is responsible 

only for diffraction of the gravity wave. For coincidences only it is  

W12(ϑ1,ϑ2) = 2F1F2C1cos(ω(t2 - t1)     (III.29) 

The normalized probability is: 

W12(ϑ1,ϑ2) = cosϑ1cosϑ2cos((πd/λ)sinϑ1)P   (III.30) 

The probability (W1(ϑ1)) which concern only the variable ϑ1 (when ϑ2 = 0) is: 

W1(ϑ1) = cosϑ1cos((πd/λ)sinϑ1)P    (III.31) 

This is the coincidence counting rate of the interference picture when scanning the 

angle ϑ1; (ϑ2 = 0).  

When the angle ϑ1 = 0 is fixed, then a pattern such as a standard diffraction pattern 

must ben observed after the single slit (2b): 

W2(ϑ2) = cosϑ2 P       (III.32) 

 
In Fig.III.9, an example of interference picture is shown (for the case d = 2λ). Such 

experiments are difficult namely because there are difficulties in arranging the 

experimental setup precisely (L1 = L2 = L; d1 = d2 = d; and the point-like source on the 

axis). Such experiments will show that when a particle – soliton – passes only one of the 

two opened slits, its photon gravity wave passes the two slits and a pattern, like the 

standard interference pattern, must be observed (contrary to Copenhagen’s 

interpretation). 
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Fig.III.9. Proposed experiments. The expected results of experiments – double-slit, 

single slit: a) solid line - the coincidence counting rate of detector D2 after the single-
slit (D1 fixed at ϑ1 = 0). b) solid  line – “like” an interference picture (ϑ2 = 0). c) doted 
line – a standard interference picture. 

 

III.8. One double-slit and one transparent parallel plate. 

The mentioned above difficulties can probably be avoided replacing in (Fig.III.8) the 

double-slit (2) with a Heisenberg lens [31]. Here a simpler case is examined, where the 

double-slit (2) is replaced by a homogenous transparent thin parallel plate (3). This is 

shown schematically on Fig.III.10. 

The distance (L) between the source (S) and the transparent plate is the same as the 

distance between the source and the double-slit. The correlated particle-solitons pass 

through the slit 1a or the slit 1b of the double-slit (1), but its twin brothers particle-

solitons must pass only the corresponding positions 3b and 3a on the transparent plate 

(3). The wave of such photons passes everywhere through the transparent plate, but only 

electromagnetic particle-soliton can be scattered elastically. The scattered soliton (and 

gravity wave) in the place 3b (at angle ϑ2) is superposed with the gravity wave, which 

pass the place 3a. Because of the necessary conditions for coincidences (in the time) 

(III.21, III.22, and III.23), this soliton can interact with the detector D2. The same is true 

for the photon which can be scattered elastically on the place 3a, but is superposed with 

the gravity wave passing through the position 3b.  
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The waves which pass at other positions through the transparent plate cannot be 

superposed with the scattered soliton wave (coincidences only! Eqs.III.21 and III.22). 

So, when coincidences are used, after the transparent plate 3, the interference picture 

must correspond to the results given by expression (III.24). Without coincidences 

(point-like source) only standard interference pattern after the double-slit 1 can been 

observed, and after the transparent plate (3), the counting rate will be almost constant.  

New proposal for experiments. When the point-like source (S) is on the axis, then 

the distance L2 is not essential because for coincidences the following conditions have to 

be fulfilled:  

L2/L1 = d2/d1.        (III.33) 

d1 and L1 are fixed by the distance between the source and the double-slit aperture 1, and 

the conjugated solitons automatically find the places d2 at distance L2 through which its 

must pass and can be scattered at angle ϑ2. If L2 > L1, then the new distance (d2) on the 

transparent plate where the conjugated solitons pass  is d2 > d1. 

This could be observed experimentally because the maximuma of interference 

fringes, registered by the detector D2,  will be more (in number) and closer to each others 

(compared with the interference picture of D1). The properties of a parallel transparent 

plate can be confirmed experimentally without the difficulties mentioned for experiments 

described in Fig.III.8. If L2 = 2L1, then obligatory d2 = 2d1 and the simultaneous 

(coincidences) registration of solitons becomes: 

W12(ϑ1,ϑ2) = cosϑ1cosϑ2cos((πd1/λ)sinϑ1)cos((2πd1/λ)sinϑ2)P (III.34) 

When one of the angle is fixed (ϑ2 = 0), then the probability for coincidences is: 

W(ϑ1) = cosϑ1cos((πd1/λ)sinϑ1)P     (III.35) 

If the other angle is fixed (ϑ1 = 0), then the corresponding probability is: 

W(ϑ2) = cosϑ2cos((2πd1/λ)sinϑ2)P;     (III.36) 
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Fig.III.10. The scheme of a double-slit and a transparent parallel plate. This must 
be consistent with experiments [31], where, instead of a transparent plate (3) a 
Heisenberg lens is used and the detector D2 scans the focal plane (ϑ1= ϑ2). 

 

 On the Fig.III.11, the results corresponding to (III.35) and (III.36) are shown for 

d1 = 2λ. The two pictures are different and expression (III.36) depends on the distances 

(d2=2d1). 

When the variables are ϑ1 = ϑ2 = ϑ, then the coincidence counting rate,W12(ϑ,ϑ), 

is:  

W12(ϑ,ϑ) = cos2ϑcos((πd1/λ)sinϑ)cos((2πd1/λ)sinϑ)P  (III.37) 
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Fig.III.11. The expected results: double-slit and transparent plate; L2 = 2L1; A) 
Solid line (b) shows the coincidences W(ϑ1), when ϑ2 = 0; B) Solid line (b) is the 
probability W(ϑ2),  when ϑ1 = 0; C) The probability W(ϑ,ϑ), when ϑ = ϑ1 = ϑ2. Dotted 
lines (A, B) correspond to a standard Young’s interference picture. 

 

III.9. Sending signals.  

In principle, the two correlated photon-solitons can be emitted from a source at a 

very large distance (for example on the Moon, or a planet). These photons can be 

separated in two Earth-laboratories and used for interference and diffraction experiments. 

In principle an observer in the first laboratory can change the conditions for coincidences 

very quickly (one double-slit with a single slit for a time t < 0.1s). An observer in the 

second laboratory can register the changes immediately (1s > t >0.1s). But this is not 

deviation of locality. The signals from the first observer are not sent to second observer 

via the Moon. (The necessary time for this will be more than 2 s). The photons registered 

in such experiment are sent from the Moon’s source as twin brothers and they cannot 

arrive on the Earth with different properties. The two observers can only confirm this 

fact. Such confirmations cannot be made faster than the speed of light (f. e. with the help 
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of coincidence circuits).  This is the same as if two twin brother cosmonauts (different 

color of clothes, red and blue) are sent from the Moon with different space ships,  

arriving at different places on Earth at the same moment (independently of the flight-

time). If the first observer receives a “blue” cosmonaut, then it is sure that the second 

observer (simultaneously with the first) will welcome a “red” cosmonaut.   

The experiments checking simultaneously some property of correlated photons 

frequently use the constant difference of polarization of correlated photons. In this case 

the authors think that polarization devices can change instantly the plane of polarization 

of a common wave function (Fig.III.4). On this Figure, the polarization of two photon is 

equal (E01 = E02 = E0) and this can be used for sending signals. Now it is clear that 

correlated solitons preserve their polarizations (E01, E02) independently from the 

distance. When someone observes polarization E01 then he is sure that the correlated 

soliton (at the same moment) has a polarization E02 (and vice versa). Without 

coincidence circuits, the polarization of the twin brothers also cannot be confirmed. 

Because coincidences are possible only when two photons are born as twin brothers, then 

the first observer changing the plane of his observed polarization necessarily changes the 

corresponding soliton (twin brother) for the second observer. The two experimentalists 

observe instantly one other pair of twin brothers (independently of distance 

between them). Such experiments only show that any pair of twin brother has a constant 

angle between their polarization planes (electric vectors E01 and E02). Polarization 

devices cannot change the plane of polarization of a common wave function at a distance 

between the two observers (f. e. via the source). The common wave function is only a 

mathematical possibility to know the plane of two vectors (E01 and E02) which act 

independently from each other. (Non-local is only possibility to change (writing) 

simultaneously the mathematical plane of polarization).  So, despite that the properties of 

different pairs can be observed simultaneously (independently of distance), the signals 

cannot be sent faster than the speed of light because a coincidence circuit between the 

two observers must be used, and it works with speeds equal or smaller than the speed of 

light. Obviously, the Copenhagen illusion that because of possible nonlocality, signals 

can be send faster than the speed of light (and other “stupidities”, as wrote Schrodinger), 

are due to misunderstanding of the particle’s properties described in this work.  
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III.10. Some new problems. 

Bohm and Hiley [3] (p.128) write: “In doing this we assume, as we have been 

emphasising throughout this chapter, that the underlying reality is not just the wave 

function, but that is also has to include the particles.”  

The wave of de Broglie and the gravity wave are formally equivalent. The gravity 

wave cannot be registered with photo-detection - we don’t know any other detector for 

such low gravity energy. When one initial photon (hω=(E0)2Ve) passes two different 

branches (ways) in some interferometer (according to the gravity wave properties 

discussed here), it is sure that one of the branches is “empty” of soliton and other 

contains soliton. Probably the empty gravity wave energy must propagate with the speed 

of light, and must conserve frequency (ω), polarization, torsion angle, spin and phase. 

When interacting with other particles (probably by means of gravity forces), the empty 

gravity wave can interchange gravity energy, can be reflected (scattered) or be absorbed 

by other particles. The “full” branch contains soliton and its new gravity wave - new 

photon. The energy of this photon must be smaller than the energy of the initial photon, 

but this energy difference is completely negligible, and the new wave-length λf cannot be 

distinguished from the initial photon wavelength λ. The photon in the “full” branch can 

interact with the particles in the same manner as the initial photon. In any new full 

branch the photon can be split, reflected (scattered), recombined or absorbed. These 

properties follow from the present work, but are not proved. If these properties exist, 

many new problems arise and some of them are: 

Is registration of gravity waves possible? What must be used for a direct registration 

of such low energy? If one photon can be split successively great many times (without 

recombination), can its energy (frequency ωf, compared to the initial photon (ω)) be 

distinguished? How many splittings are necessary for that?  

Such splittings, I think, are possible only when photons arrive from very large 

distances – far from Earth – from deep universe. The splitters (particles, atoms, ions, 

powder) in cosmic space must split the photon, scattering forward a soliton with 

negligible decrease of energy. If these splitters are great many, the loss of photon’s 

energy must be noticed in observatories (laboratories) as a red frequency shift ∆ω. Such 

red frequency shift is observed - Doppler’s shift of an expanding universe. Almost all 
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galactic velocity projections (v) are directed away (opposite) from Earth. Is it possible to 

distinguish the Doppler effect from the red frequency shift due to photon splitting? It is 

reasonable that photon’s red splitting shift cannot be distinguished from the red 

Doppler shift. (Except if someone discovers a stationary Universe. In the last years, at a 

very large distance from Earth, about 1010 light years, an old galactic was observed with 

a structure corresponding to our “old galactic Milky Way”. This can collapses our 

knowledge of Universe). 

Conclusions: The Main. 

 I think that the main results of this “Essay” are the described properties of the 

photon and the hydrogen atom “beyond” the contemporary quantum physics. One part of 

these properties is confirmed from old experimental investigations of quantum objects. 

These experimental results are well known in science, but only now can be understood. 

The other part is results that can be verified with new experiments proposed here (also 

beyond the contemporary quantum physics). 

First, I will repeat the experimentally proven results.  

1. The main relation between the soliton’s electric amplitude E0 and the frequency 
ω of the photon  

2
0E = K0ω3         (III.38) 

is confirmed from the relation between the electric field (E) of K-shell for all elements, 
and the photon frequencies corresponding to the energy of ionization (experiments with 
accuracy better than ±15%). This relation is consistent with the experimentally proven 
for a long time Plank’s density of radiation.  

2. The volume of the soliton (Ve=Sele) was obtained from the effective time of 
transition in hydrogen (te=le/c=1/2ω) and (III.38). The classical cross section of the 
soliton (Se) determine photo-effect cross-sections: 

στ =(1+πhc/2e2)Se.         
Here (στ) are experimentally observed photo effect cross sections for the K-shell of 

all elements, and Se are the soliton cross sections calculated in this work (for energies 
equal to the ionization energy of the K-shells). The experimental uncertainties are about 
±15%. 

3. The effective time of soliton emission te=1/2ω is confirmed experimentally with 
both the effective time of transition in the hydrogen atom, and the acceleration of the 
electron. The accelerations of the electron in atomic transitions corresponds to all 
energies emitted by the hydrogen atom. So, the properties of the soliton and the 
hydrogen atom complement each other and prove the soliton length le=λ/4π with 
experimental accuracy known in science. 

4. “Own lifetime” (ti) of the hydrogen atom is used to calculate the mean lifetime (τ) 
for the first time (with accuracy better than experimental accuracy). These calculations  
are impossible from Copenhagen’s point of view. The own lifetime of hydrogen is 
consistent with the relative “own lifetime” of a nucleus [23]. These results only (own 
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lifetime, ti) are sufficient to understand that disintegration is not a chance event but 
follows exact quantum laws. 

 5. All existing experiments with correlated photons are explained with the help of 
soliton-gravity wave (photon).  

 
Proposed new experiments.  

1. “One slit - double slit” experiment contradicting Copenhagen’s predictions can 
prove the reality of gravity waves (de Broglie’s waves) and their mathematical 
description. 

2. “Double slit – transparent plate” experiments also show that gravity waves are 
something real but not statistical. 

I think that the experiments proposed here are inevitable.  

 

 In the beginning of the Twenties Century, Planck, in spite of his inner, inherent 

resistance, guessed that light must consists of particles. The Age of Quantum physics 

opened and Einstein, Bohr, de Broglie, Schrodinger, Bohm and many others reached 

significant results that are important nowadays. Because the initial conditions of Bohr’s 

hydrogen model was incomplete it was not possible to explain all experiments with a 

statistical ensemble of atoms.  

Copenhagen’s quantum physics, as was noticed successfully from Einstein, is a 

repetition of Classical Thermodynamics role in statistical physics. Classical 

thermodynamics is a very exact science for existing information of the things, before 

knowing for the atoms and the molecules (“beyond” the classical thermodynamics). In 

the last years many scientists think that quantum mechanics is not explanation of the 

world, but it is a science which examine existing in our mind information for quantum 

objects. This can been accepted, but it is not acceptable the assertions that world exists 

only in our minds. The illusions exist, but our world is not “a collective 

hallucination” [43]. Many of my colleagues objected to the title of this Essay, because 

there is no quantum method, but only classical methods of the investigations. I agree that 

this investigations are “beyond the quantum methods” but they examine in more details 

the solitary quantum objects [21,44]. 

As it was seen in this work, in the classical physics there are also many incomplete 

assertions. But in the classical physics, with classical methods, Russel (1884) [I.10] 

studied hydrodynamic solitons, which have simultaneously the properties of the waves 

and the particles. If his observation of solitons in Thames and the experimental results 
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are not forgotten, maybe, Copenhagen school cannot forbid the investigation in this field 

and cannot introduce in science (but not in Nature) inherent uncertainties and 

probabilities. 
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