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ABSTRACT

The thorium fission fusion hybrid is discussed as a sustainable longer term larger resource base
alternative to the fast breeder fission reactor concept. In addition, it offers a manageable waste disposal
process, burning of the produced actinides and inherent nonproliferation properties.

Historically, the thorium fission fuel cycle was investigated over the period 1950-1976 in the Molten
Salt Breeder Reactor (MSBR) at the Oak Ridge National Laboratory (ORNL) as well as in the pilot Shippingport
fission reactor plant. It has also been used in the High Temperature Gas Cooled Reactor (HTGR) in a pebble
bed and a prismatic moderator and fuel configurations. The General Atomics (GA) Company built two thorium
reactors over the 1960-1970 period. The first was a 40 MWe prototype at Peach Bottom, Pennsylvania operated
by Philadelphia Electric. The second was the 330 MWe Fort St. Vrain reactor for Public service of Colorado
which operated between 1971 and 1975.

With the present day availability of fissile U23° and Pu?®°, and available fusion and accelerator
neutron sources, a fresh look at the thorium cycle is ongoing. Whereas the U?33-Th?32 fuel cycle is undergoing a
revival as a replacement of the existing Light Water Reactors (LWRs) system, a highly promising approach is its
use in fusion-fission hybrid reactors as an eventual bridge and technology development for future pure fusion
reactors, bypassing the intermediate stage of the fast fission breeder reactors. We discuss the possibility of
taking advantage of the Th cycle benefits in the form Ofi: optimized fission-fusion thorium hybrid.

The nuclear performance of a fusion-fission hybrid reactor having a molten salt composed of Na-
Th-F-Be as the blanket fertile material and operating with a catalyzed Deuterium-Deuterium (DD) plasma is
compared to a system with a Li-Th-F-Be salt operating with a Deuterium-Tritium (DT) plasma. In a reactor with a
42-cm thick salt blanket followed by a 40-cm thick graphite reflector, the catalyzed DD system exhibits a fissile
nuclide production rate of 0.88 Th(n,y) reactions per fusion source neutron. The DT system, in addition to
breeding tritium from lithium for the DT reaction yields 0.74 Th(n,y) breeding reactions per fusion source
neutron. Both approaches provide substantial energy amplification through the fusion-fission coupling
process.

In a fuel factory concept using a DT fusion source, a tritium yield per source neutron of 1.08 and a
Th (n, y) reaction yield of 0.43 can be obtained whereas ThO, Zircaloy-clad fuel assemblies for Light Water
Reactors (LWRs) are enriched in the U?*3 isotope by irradiating them in a Pb flux trap. This corresponds to
0.77kg/[MW(th).year] of fissile fuel production, and 1.94 years of irradiation in the fusion reactor to attain an
average 3 w/o fissile enrichment in the fuel assemblies. For a once through LWR cycle, a support ratio of 2-3 is
estimated. However, with fuel recycling, more attractive support ratios of 4-6 may be attainable for a
conversion ratio of 0.55, and 5-8 for a conversion ratio of 0.70.

Such an alternative sustainable paradigm would provide the possibility of an optimized fusion-
fission thorium hybrid for long term fuel availability with the added advantages of higher temperatures thermal
efficiency for process heat production, proliferation resistance and minimized waste disposal characteristics.



Regeneration factor as a function of neutron energy for the different fissile isotopes.
Breeding in the Thorium-U233 fuel cycle can be achieved with thermal or fast neutrons.
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For a first generation application of the fusion hybrid
using the Th cycle, the DT fusion fuel cycle can be
used

D?+.T° > ,He*(3.52 MeV)+,n*(14.06 MeV) + 17.58 MeV

Deuterium can be obtained from heavy water D,O separated from
ordinary water H,0.
Tritium (T) must be bred from abundant supplies of lithium as feed to
the DT fusion reaction.

,Li°+ n'(thermal) — ,He*(2.05 MeV)+,T°(2.73 MeV) + 4.78 MeV
,Li"+ n'(fast) » ,He*+ n'+ T°- 2.47 MeV



For a practically unlimited supply of deuterium from water at a
deuterium to hydrogen ratio of D/H = 150 ppm in the world oceans,
one can envision the use of the catalyzed DD reaction in the
fusion island

,D*+,D* - T°(1.01)+,H*(3.03) + 4.04 MeV
,D?+,D? —» ,He’(0.82) + ,n'(2.45) +3.27 MeV
,D?+ T°—  He'(3.52) + ,n'(14.06) + 17.58 MeV
D’ + He’ —» ,He*(3.67) +,H'(14.67) +18.34 MeV

6,D° —>2,H'+2,He* +2,n" +43.23MeV



Fusion-fission reactor geometrical model

Material Zone Outer Radius Thickness Remarks
(cm) (cm

Plasma 1 100.0 100.0 DT(14.06 MeV) or,

Catalyzed DD (50 % 2.45 MeV + 50 % 14.06 MeV)
Void 2 150.0 50.0 Vacuum zone
First wall 3 151.0 1.0 Type 316 stainless steel
Water coolant 4 151.5 0.5 H,0 cooling channel
Structure 5 152.5 1.0
Molten salt 6 194.5 42.0 NaF.BeF,.ThF, or:

LiF.BeF,.ThF,

p =4.52 gm/cm3 (71-2-27 mol %)
Structure 7 195.5 1.0 Type 316 stainless steel
Neutron reflector 8 235.5 40.0 Graphite as C12
Structure 9 236.5 1.0 Type 316 stainless steel
Albedo 10 - - 20 percent albedo surface to simulate neutron and

gamma ray reflection




Fusion-fission material compositions

Material

Composition

Nuclide Density
[nuclei/(b.cm)]

1. LiF.BeF,.ThF, salt 5Li¢ 1.414x103

p = 4.52 gm/cm3 sLi7 1.744x102

71-2-27 mol % .Be? 5.310x10

6o TH230 7.169x103

oF10 4.859x102

2. NaF.BeF,.ThF salt 11NaZ? 1.697x10-2

p =4.52 gm/cm?3 .Be® 4.799x10

71-2-27 mol % 6o TH230 6.452x103

oF1° 4.373x102

3. Type 316 stainless steel C 1.990x10+4

63.6 wt% Fe, 18 wt% Cr, 13 wt% Ni, 2.6 wt% Si 1.360x103

Mo, 1.9 wt% Mn, 0.9 wt% (Si+Ti+C) Ti 4.980x105

p =7.98 gm/cm3 Cr 1.150x10-2

Mn 1.650x10-3

Fe 5.430x10-2

Ni 1.060x10-2

Mo 1.290x10-3

4. Graphite Cc 1.128x10-"
p =2.25 gm/cm?

5.H,0 H 6.687x102

p =1.0 gm/cm3 (o) 3.343x102




Fissile and fusile breeding for sodium and lithium salts in DT and
DD symbiotic fusion-fission fuel factories. Blanket thickness =42

cm, reflector thickness =40 cm; no structure in the salt region.

Source Li-Be-Th-F Salt Na-Be-Th-F Salt
Lis(n,a)T Li’(n,n’a)T Be?(n,T) F(n,T) Total Th(n,y) Be?(n,T) F(n,T) Total Th(n,y)
T T
(Nuclei / fusion source neutron)
DD 0.311 0.001 4.03x10-10 1.01x107 0.312 0.579 4.18x10-1° 1.04x10-7 1.04x10-7 0.794
100% 2.45 MeV
DT 0.391 0.073 1.08x10+4 3.33x10-3 0.467 0.737 1.04x10+4 3.08x10-3 3.18x10-3 0.966
100% 14.06 MeV
Catalyzed DD 0.351 0.037 5.40x10-5 1.67x10-3 0.390 0.658 5.20x10-5 1.54x10-3 1.59x10-3 0.880

50% 2.45 MeV 50%

14.06 MeV
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Neutron Multiplication

The cross section distribution for the (n, 2n) and n( 3n) neutron multiplication
reactions in Th232 shows energy thresholds at 6.465 and 11.61 MeV.
Other candidate neutron multipliers are Pb, Be, Bi and U.
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Laser fusion fissile generator plant with U233 breeding.

v
1.0 0.063
I

Vo
04, +
0.25%2 ==
OIJOE"'%
FiRsT waLL — 1-45

PELLET
MICROEXPLOSION

Pb MULTIPLYING - REFLECTING ZONE

LITHIUM BREEDING ZONE

REFLECTOR
SCRAPE OFF ZONE

_— CONCRETE OR MORTAR
SHIELD

| FIAST WALL {(0.002) THICK)

1 - CARBON REFLECTOR

DIMENSIONS IN METERS

BOTTOM
XIAL

2]
. -
o
1.0
13.63 6.09 . C.
.. L4
_E;I-_,rfi_lnuum
. - BREEDING ZONE
]
. . @
5 . .
»
-} ' .
- | SCRAPEOFF Li ZONE
/ 6.1 ]

o O
LEAD NEUTRON
o
L"?;;7PMULTIF"LIEF{ ZONES

1.2l —~ THREE STACKED FUEL

Pl o
Fa ASSEMBLIES
e * (4.06 LENGTH)

oAt
e \

F)

& ie STRUCTURAL WALLS

(0.02 THICK)




ThO, Pressurized Water Reactor fuel elements within a flux trap neutron
multiplication zone, followed by a tritium breeding zone and a graphite
reflector.
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Fusion fissile generator plant with U233 breeding.
Material compositions.

Atomic densities
Material composition Element [atoms/(barn-m)]

1. First wall and structural wall

100 v /o Zircaloy-4 Zr 4374+0
9824 w/o Zr+1.5w/0 Sn Sn 49622
+0.21 w/o Fe Cr 7.812-3
+0.10 w/0 Cr Fe 1.527—-2
p(Zircaloy-4)=6.745 % 10°
kg /m’
2. Reflector e §.37340

100% Reactor-grade graphite
p(graphite)=1.67x10°

kg,/m’
3. Neutron multiplication zones Pb 214540
6503 v/o Pb+844 v/0 Zr 36921
Zircaloy-4+26.53 v/0 Sn 4.188 -3
Na coolant. Cr 6.593 -4
p(Pb)=11.35x10" kg/m’ Fe 1.289-3
p(Na)=9.71x10° kg/m’ Na 6.748 — 1
4. Fusile breeding zones ®Li 23641
68.78 v /o natural lithium i 2.950+0
+7.97 v /o Zircaloy-4 Zr 3.486—1
+23.25 v/0 Na Coolant Sn 3.955-3
p(Li)=0.534 < 10° kg /m’, Cr 6.226 — 4
722a/0°%Li+92.58 a/o Fe 1.217-3
Li Na 5914—1
5. Fissile breeding zone Th 6.415—1
28.10 v/0 ThO, + 1047 v/o 'e0 1.283+0
Zircaloy-4 Zr 4.580—1
+60.98 v /0 Na Coolant Sn 5.195-3
+1.15v /0 He Fill Gas Cr 8.179—4
p(ThO,)=10.01x10° kg/m’ Fe 1.599—3

Na 1.533+0
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Horizontal cut through unit cell of three dimensional lead flux trap
computational model.
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preeder reactors in that the energy multiplication in the fission part
faction of energy breakeven and the Lawson condition in magnetic

N reactor designs. This allows for the incremental development of
)r the eventual introduction of a pure fusion system.

f O pr|n0|p|e a compact experimental device can be built using
strostatic confinement with DD or DT fusion with a cusped configuration

; _;., 0de, and coupled to a molten salt breeding blanket at a university or a

- Nnationatl Ie oratory site.

;=__ {_TEIT an alternative sustainable paradigm or architecture would provide the

F-'_._

possibility of a well optimized fusion-fission thorium hybrid for sustainable long term
fuel availability with the added advantages of higher temperatures thermal efficiency
for process heat production, proliferation resistance and minimized waste disposal
characteristics.



" SUMMARY -

fission fusion hybrid is discussed as a sustainable longer term lar urce bas
preeder fission reactor concept. In addition, it offers a m e waste dlsposzﬂm
oduced actinides and inherent nonproliferation properties.

e present day availability of fissile U?*5 and Pu?*, and available fusion and accelerator neutron
at the thorium cycle is ongoing. Whereas the U233-Th232 fuel cycle is undergomg arevival as a

, : fusmH
rs as an eventual bridge and technology development for future pure fusion reactors,
mediate stage of the fast fission breeder reactors. We discuss the possibility of taking advantage

] i_-.Th-F-Be salt operating with a Deuterium-Tritium (DT) plasma. In a reactor with a 42-cm
et followed by a 40-cm thick graphite reflector, the catalyzed DD system exhibits a fissile nuclide

-~ In a fuel factory concept using a DT fusion source, a tritium yleld per source neutron of 1.08 and a Th

-—-(n, y) reactlon yield of 0.43 can be obtained whereas ThO, Zircaloy-clad fuel assemblies for Light Water Reactors
(LWRS) are enriched in the U233 isotope by irradiating them in a Pb flux trap. This corresponds to
0.77kg/[MW(th).year] of fissile fuel production, and 1.94 years of irradiation in the fusion reactor to attain an
average 3 w/o fissile enrichment in the fuel assemblies. For a once through LWR cycle, a support ratio of 2-3 is
estimated. However, with fuel recycling, more attractive support ratios of 4-6 may be attainable for a conversion
ratio conversratio of 0.55, and 5-8 for a conversion ratio of 0.70.

Such an alternative sustainable paradigm would provide the possibility of an optimized fusion-fission

thorium hybrid using for long term fuel availability with the added advantages of higher temperatures thermal
efficiency for process heat production, proliferation resistance and minimized waste disposal characteristics.
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