Erratum: High-spin states in ^{191,193}Au and ¹⁹²Pt: Evidence for oblate deformation and triaxial shapes [Phys. Rev. C 76, 044315 (2007)]

Y. Oktem, D. L. Balabanski, B. Akkus, C. W. Beausang, M. Bostan, R. B. Cakirli, R. F. Casten, M. Danchev,
M. Djongolov, M. N. Erduran, S. Erturk, K. A. Gladniski, G. Gürdal, J. TM. Goon, D. J. Hartley, A. A. Hecht,
R. Krücken, N. Nikolov, J. R. Novak, G. Rainovski, L. L. Riedinger, I. Yigitoglu, N. V. Zamfir, and O. Zeidan (Received 13 October 2008; published 18 December 2008)

DOI: 10.1103/PhysRevC.78.069904 PACS number(s): 29.30.Kv, 21.60.Ev, 23.20.Lv, 27.80.+w, 99.10.Cd

We report a corrected level scheme of 193 Au. A 215.3 keV transition, which was placed in Band 1a to decay out of the $15/2^{-1}$ level, was removed, and the level energies in the band were corrected as $1106.8 \text{ keV} (11/2^{-1})$ and $1522.3 \text{ keV} (15/2^{-1})$. An energy of 2100.8 keV was tentatively suggested for the $(19/2^{-1})$ level, as indicated in Fig. 1. The corresponding spectroscopic data in Table I are also corrected. The corrections influence the reported uncertainties of the energies of the transitions, their intensities, DCO ratios, and polarization ratios. The figure for the comparison of the Particle-plus-Triaxial-Rotor (PTR) model calculations with experiment is also corrected (see Fig. 2), which does not influence at all the conclusions made in Ref. [1].

We also provide corrected spectroscopic data for ¹⁹¹Au in Table II. The corrections influence the uncertainties of the energies of the transitions, their intensities, DCO ratios, and polarization ratios.

E_{γ} (keV)	E_i (keV)	$I_i^\pi o I_f^\pi$	$I(\Delta I)$	$R_{\rm DCO}(\Delta R_{\rm DCO})$	$A_{ m pol}(\Delta A_{ m pol})$	Multipolarity
98.6 (5)	2476.9	$31/2^- \rightarrow 27/2^-$	18.6 (3)	_	_	_
133.1 (5)	2081.1	$25/2^+ \rightarrow 21/2^+$	48.7 (5)	1.22 (37)	_	E2
161.8 (5)	2488.0	$31/2^+ \rightarrow 29/2^+$	40.3 (3)	0.70 (18)	-	M1
204.9 (5)	2378.3	$27/2^- \rightarrow 23/2^-$	136.3 (7)	1.04 (9)	0.12 (15)	E2
224.5 (5)	2701.4	$33/2^- \rightarrow 31/2^-$	109.1 (6)	0.80 (9)	-0.05(10)	M1/E2
245.1 (5)	2326.2	$29/2^+ \rightarrow 25/2^+$	47.3 (4)	1.01 (26)	0.11 (16)	E2
285.1 (7)	4351.5	$47/2^+ \rightarrow 43/2^+$	20.9 (4)	1.14 (19)	0.12 (12)	E2
297.2 (8)	2378.3	$27/2^- \rightarrow 25/2^+$	73.1 (4)	0.55 (9)	0.12 (9)	E1
316.5 (5)	1106.8	$11/2^- \to 9/2^-$	80.2 (9)	0.88 (12)	-0.09(7)	M1/E2
406.7 (9)	1197.0	$13/2^- \to 9/2^-$	48.4 (7)	1.17 (29)	0.05 (9)	<i>E</i> 2
408.0 (5)	698.1	$15/2^- \to 11/2^-$	306.5 (10)	_	_	E2
415.5 (9)	1522.3	$15/2^- \to 11/2^-$	32.7 (3)	1.23 (24)	0.04 (23)	E2
436.9 (5)	2924.9	$35/2^+ \rightarrow 31/2^+$	45.5 (4)	1.14 (18)	0.08 (9)	E2
454.4 (5)	3155.8	$(37/2^{-}) \rightarrow 33/2^{-}$	104.9 (5)	1.10 (22)	0.13 (10)	E2
500.2 (5)	790.3	$9/2^- \rightarrow 11/2^-$	100.0 (5)	_	_	M1/E2
514.5 (9)	1711.5	$17/2^- \rightarrow 13/2^-$	44.2 (25)	1.05 (24)	0.14 (9)	E2
519.4 (5)	3444.3	$39/2^+ \rightarrow 35/2^+$	36.1 (5)	1.07 (31)	0.09 (15)	E2
528.4 (5)	1948.0	$21/2^+ \rightarrow 19/2^-$	122.5 (10)	0.88 (13)	0.06 (8)	E1
530.7 (9)	5232.6	$(49/2^-) \rightarrow (45/2^-)$	46.6 (6)	1.05 (23)	0.10(7)	E2
578.5 (9)	2100.8	$(19/2^{-}) \rightarrow 15/2^{-}$	11.9 (19)	1.19 (33)	0.16 (31)	E2
611.3 (8)	2322.8	$21/2^- \rightarrow 17/2^-$	32.9 (4)	1.13 (33)	0.02 (14)	E2
622.1 (5)	4066.4	$43/2^+ \rightarrow 39/2^+$	29.5 (6)	1.09 (19)	0.11 (9)	E2
682.8 (9)	5744.6	$55/2^+ ightarrow 51/2^+$	9.3 (3)	0.96 (21)	0.05 (10)	E2
710.3 (9)	5061.8	$51/2^+ ightarrow 47/2^+$	10.3 (3)	1.04 (31)	0.12 (14)	E2
721.5 (5)	1419.6	$19/2^- ightarrow 15/2^-$	278.6 (12)	1.07 (8)	0.06 (2)	E2
741.1 (5)	3896.9	$(41/2^{-}) \rightarrow (37/2^{-})$	106.8 (6)	1.08 (13)	0.13 (4)	E2
753.8 (5)	2173.4	$23/2^- ightarrow 19/2^-$	99.2 (6)	1.18 (36)	0.09 (17)	E2
805.0 (5)	4701.9	$(45/2^-) \to (41/2^-)$	81.3 (7)	0.95 (23)	0.04 (6)	<i>E</i> 2

TABLE I. Corrected spectroscopic data for the γ rays belonging to ¹⁹³Au. The corrections influence the reported uncertainties of the energies of the transitions, their intensities, DCO ratios, and polarization ratios.

FIG. 1. Corrected level scheme of ¹⁹³Au. The 215.3 keV transition in Band 1a was removed.

E_{γ} (keV)	E_i (keV)	$I_i^\pi o I_f^\pi$	$I(\Delta I)$	$R_{\rm DCO}(\Delta R_{\rm DCO})$	$A_{ m pol}(\Delta A_{ m pol})$	Multipolarity
175.0 (5)	3429.9	$37/2^- \rightarrow 33/2^-$	4.1 (1)	1.03 (29)	0.20 (14)	<i>E</i> 2
228.0 (5)	3657.9	$41/2^- \rightarrow 37/2^-$	0.9(1)	1.05 (17)	_	E2
238.0 (8)	2926.9	$29/2^- \rightarrow 25/2^-$	12.5 (4)	1.04 (21)	0.10 (15)	E2
274.4 (5)	540.6	$9/2^- \to 11/2^-$	100.0 (7)	_	_	M1/E2
328.0 (8)	3254.9	$33/2^- \rightarrow 29/2^-$	9.1 (3)	1.07 (35)	0.07 (11)	<i>E</i> 2
357.0 (5)	897.6	$11/2^- \to 9/2^-$	44.0 (4)	0.73 (14)	-0.22(9)	M1/E2
371.3 (5)	911.9	$13/2^- \to 9/2^-$	91.4 (6)	1.09 (11)	0.00 (5)	E2
439.8 (6)	1352.3	$15/2^- \rightarrow 13/2^-$	25.4 (3)	0.72 (20)	-0.13 (19)	M1/E2
454.7 (8)	1352.3	$15/2^- \rightarrow 11/2^-$	6.0(1)	1.02 (32)	0.12 (10)	<i>E</i> 2
489.9 (6)	1922.9	$19/2^- \to 17/2^-$	13.7 (2)	0.75 (24)	-0.21 (13)	M1/E2
511.7 (5)	2547.2	$23/2^- \rightarrow 21/2^-$	18.4 (3)	_	-0.07(13)	M1/E2
519.7 (5)	1431.6	$17/2^- \rightarrow 13/2^-$	45.7 (5)	1.07 (16)	0.01 (9)	<i>E</i> 2
570.6 (10)	1922.9	$19/2^- \to 15/2^-$	9.7 (2)	1.08 (26)	0.06 (9)	E2
601.6 (2)	2033.2	$21/2^- \rightarrow 17/2^-$	30.1 (6)	1.10 (21)	0.01 (14)	E2
624.3 (5)	2547.2	$23/2^- \rightarrow 19/2^-$	4.8 (2)	0.92 (35)	0.13 (16)	E2
655.7 (6)	2688.9	$25/2^- \rightarrow 21/2^-$	19.3 (3)	0.99 (27)	0.10 (17)	<i>E</i> 2

TABLE II. Corrected spectroscopic data for the γ rays belonging to ¹⁹¹Au. The corrections influence the reported uncertainties of the energies of the transitions, their intensities, DCO ratios, and polarization ratios.

FIG. 2. Comparison between the PTR model calculations and experiment for $\pi h_{9/2}$ bands in ^{187,189,191,193}Au.

[1] Y. Oktem et al., Phys. Rev. C 76, 044315 (2007).