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O(6)-symmetry breaking in the γ -soft nucleus 126Xe and its evolution
in the light stable xenon isotopes

L. Coquard,1 G. Rainovski,1,2 N. Pietralla,1 T. Ahn,1,3 L. Bettermann,4 M. P. Carpenter,5 R. V. F. Janssens,5 J. Leske,1
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Low-lying collective states in 126Xe have been investigated via the 12C(126Xe,126Xe∗) projectile Coulomb
excitation reaction at 399 MeV. The γ decays were detected with the Gammasphere array. Coulomb excitation
cross sections relative to the 2+

1 state were obtained. Twenty-two absolute E2 transition strengths have been
deduced. An sd– interacting boson model (IBM-1) fit agrees well with the new experimental data. This makes a
quantitative test of O(6)-symmetry breaking in 126Xe possible. The measured absolute B(E2) values indicate a
preservation of O(5) symmetry, while the O(6) symmetry is broken. The evolution of O(6)-symmetry breaking
and of O(5)-symmetry conservation in the 124,126,128Xe isotopic chain is discussed.
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I. INTRODUCTION

Atomic nuclei are many-body fermionic quantum systems
whose dynamics is governed by the strong nuclear interaction.
The strongly coupled many-body nature leads to collective
motion of nucleons governed by the symmetries of the resid-
ual interactions between them. Those symmetries manifest
themselves as regular sequences of excited levels and through
certain simple selection rules for their electromagnetic decays.
The question of how such well-pronounced, simple behavior
arises from the complex motion of many strongly interacting
fermions and of how this behavior evolves as a function of
nucleon number has been and is still one of the central issues in
nuclear structure research. There are two extreme approaches
to this question. One is to utilize the semiclassical concept
of nuclear shapes at the expense of sacrificing the link to
the contribution of individual nucleons. The second approach
is to perform microscopic calculations. The solution of this
problem in the full configuration space remains a considerable
computational challenge, which, in practice, can be solved
for heavy nuclei only after considerable truncations. One
intermediate approach for describing the low-lying quadrupole
collective modes in even-even nuclei was suggested in terms of
the interacting boson model (IBM-1) [1,2]. The IBM-1 model
considers the valence nucleons coupled into boson pairs with
spins J = 0 (s boson) and J = 2 (d boson) only.

The IBM-1 Hamiltonian possesses inherent U(6) symmetry,
which can be used as a powerful algebraic tool for classifying
the nature of low-lying collective states of even-even nuclei
into three symmetry classes: U(5) [3], SU(3) [4], and O(6) [5].
The presence of a symmetry is related to the conservation
of certain quantum numbers. At these dynamical symmetries,
the IBM Hamiltonian is analytically solvable [1,2], and the
solutions are directly related to analytically solvable cases of
the geometrical Bohr Hamiltonian [6], the harmonic vibrator,
the quadrupole-deformed axial rotor, and the γ -unstable rotor

[7], respectively. The existence of any of the dynamical
symmetries is experimentally established by observing the
specific energy-level patterns and decays that follow the
associated selection rules. Exact realizations of the dynamical
symmetries are not manifested in nature, but finding nuclei
that behave closely to them is an important task because such
systems serve as benchmarks for the evolution of nuclear
collectivity. Moreover, such benchmark nuclei also show to
what extent the bosonic approximation holds for the fermionic
nuclear many-body problem.

The experimental observation of O(6) symmetry in nuclei
is scarce. The best established case is 196Pt [8,9]. Also,
the Xe-Ba-Ce nuclei in the A ≈ 130 region are considered
as exhibiting O(6)-like behavior [10]. The stable even-even
xenon isotopes, 124−132Xe, were considered to be part of this
extensive O(6)-like region. Indeed, the low-spin structures of
128Xe [11], 126Xe [12], and 124Xe [13] manifest O(6)-like
arrangements of energy levels [10] and E2 branching ratios
reflecting the selection rules of the O(5) symmetry, where
O(5) is a subgroup of O(6). However, this interpretation
was challenged very recently in the case of 124Xe [14]. It
has now been shown quantitatively that the O(6) symmetry
is severely broken, while the O(5) symmetry holds well.
This surprising result for 124Xe [14] naturally leads one to ques-
tion to what extent the O(6) symmetry is broken or preserved
in the neighboring xenon isotopes. Such an unambiguous
and quantitative study of symmetry breaking and preservation
requires a complete set of absolute E2 transition strengths,
especially the ones associated with transitions between states
from different O(6) quantum numbers σ and O(5) quantum
numbers τ . These absolute E2 transition strengths test the
validity of the selection rules directly; in the cases of O(6) and
O(5) symmetries, E2 transitions are allowed between states
with �σ = 0 and �τ = ±1. This experimental information is
rarely available, but it has been shown [14–16] that projectile
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Coulomb excitation can serve as a powerful tool to obtain
it. The purpose of the present study is to investigate the
126Xe low-spin states with projectile Coulomb excitation. The
information obtained on the absolute E2 transition strengths
allows us to quantify the degree of O(6)-symmetry breaking
or preservation in this nucleus, following the method outlined
in Ref. [14]. The same analysis is carried out for 128Xe using
the results from Ref. [15]. Altogether, information is provided
on the evolution of O(6)-symmetry breaking and preservation
in the chain of xenon isotopes when the neutron number
approaches the N = 82 shell closure.

II. EXPERIMENT

The experiment was performed at Argonne National
Laboratory. The superconducting ATLAS linear accelerator
provided a beam of 126Xe ions with an energy of 399
MeV, which corresponds to ∼80% of the Coulomb barrier
for reactions on a 12C target [17]. The beam intensity was
∼1 pnA. The beam was pulsed (12 MHz) and impinged on a
natural 12C target of 1-mg/cm2 thickness. The emitted γ rays
were detected by the Gammasphere array, which consisted
of 98 high-purity Compton-suppressed germanium detectors
arranged in 16 rings [18,19]. The event trigger was defined
by detection of a single γ ray, but higher-multiplicity events
were recorded as well. The average trigger readout rate was
15 000 events/s (readout dead time was ∼30%). This count
rate compares with a “beam-off” rate of 600 events/s. The total
number of recorded events was 1.3 × 109 for a running time of
∼29 h and approximately 1.8 × 107 events of γ -ray fold higher
than 1 were sorted into a γ γ -coincidence matrix. Doppler
correction (recoiling velocity β = 6.4(2)%) and time-random
background subtraction was applied. As the beam energy
was relatively low, the dominant beam-off count rate came
from natural sources. This background was identified and
subtracted by selecting events occurring between the beam
bursts, scaled to eliminate the 1461-keV decay from 40K. The
singles spectrum is displayed in Fig. 1.
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FIG. 1. (Color online) Background-subtracted and Doppler-
corrected single γ -ray spectrum for the sum over all Ge detectors
following 126Xe Coulomb excitation on a 12C target.

III. DATA ANALYSIS

All the γ transitions observed have been placed in the 126Xe
level scheme, and their corresponding intensities are listed in
Table I. They were reported previously in Refs. [12,20,21],
except for the 1373-keV line originating from the decay
of the 3−

2 state at 2315 keV to the 4+
1 level at 942 keV.

The γ -ray intensities have been normalized to the 2+
1 → 0+

1
ground-state transition, which dominates the spectrum by three
orders of magnitude. The population yields of each state have
been deduced from γ singles and γ γ -coincidence data. The
contribution from the electron conversion decays was small
in comparison to the systematic errors (<1.5%, [22]) and
has been neglected. The contributions of known transitions
that were not observed (e.g., due to their too low energy or
the presence of contaminants) have been determined from
previously published branching ratios [23].

The observed relative yields measure the Coulomb excita-
tion (CE) cross sections relative to the 2+

1 state. The multiple-
Coulex code CLX, based on the Winther–De Boer theory [24],
has been used to determine the set of matrix elements that
reproduce the observed relative cross sections. The previously
known B(E2; 2+

1 → 0+
1 ) = 0.152(5) e2b2 value from Ref. [23]

sets the absolute scale. The energy loss of the beam inside
the target (∼40 MeV) was taken into account. The unknown
quadrupole moments of excited states were allowed to vary
between the extreme rotational limits (Q = ±2.78 e b),
adding uncertainties of 5%, on average, to the transitional
matrix elements. The input matrix elements in CLX were also
constrained by the known branching and multipole mixing
ratios. The choice of sign of the matrix elements is not always
unique in a fit to multistep Coulomb excitation processes.
However, constraints come from the requirement that the
relative phases must be “quantum mechanically coherent.” The
signs of the E2 matrix elements were chosen to be in agreement
with those predicted by the IBM-1 calculation described below
and are also listed in Table I for clarity (σ ). In addition to the
statistical uncertainties, the final results in Table I include
uncertainties from all quantities varied or constraining the
variations in the procedure described above, e.g., branching
ratios, multipole ratios, and unknown quadrupole moments.

IV. RESULTS

The resulting B(E2) transition strengths are given in
Table I. The present analysis resulted in 22 absolute values
and 7 upper limits for the B(E2) strengths. Due to their small
values, the B(M1) transitions strengths have been omitted in
Table I, except for the relevant upper limit obtained for the
transition of the 2+ state at 2455 keV to the 2+

1 level.

(i) 4+
1 level at 942 keV. The unobserved 4+

1 → 2+
2 transition

at 62 keV does not play a significant role for the
population of the 4+

1 state at 942 keV. Another issue
with the population of the 4+

1 state is the contribution
of a one-step E4 excitation. Since it was impossible
to quantify or estimate this B(E4) transition strength,
the B(E2; 4+

1 → 2+
1 ) value in Table I assumes no E4

transition from the ground state.
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TABLE I. Measured properties of the levels and γ -ray transitions in 126Xe. The absolute E2 strengths are compared to sd–IBM-1
calculations.

Elevel (keV) J π Eγ (keV) Iγ J π
final δa σ Transition strengthb τ

Exp. IBM-1 (ps)

388 2+
1 388 106 0+

1 + 41.0(13)b 41.0 58.8(19)c

879 2+
2 491 7836(58) 2+

1 +9.1+43
−2 − 43.2(26) 48.9 13.5(17)

879 2134(17) 0+
1 + 0.63(7) 0.65

942 4+
1 63d 2+

2 − 0.01 5.9(6)
553 7655(56) 2+

1 + 71.0(67) 58.9

1314 0+
2 434e 11.1(18) 2+

2 + 64(9) 58.0 4.36(54)
925e 45.4(21) 2+

1 − 5.9(9) 5.51

1317 3+
1 376f 1.43(28) 4+

1 − �22.1(13)g 15.9 11.8(12)
438e 7.7(15) 2+

2 +8+3
−2 + 55.7(63) 45.0

929e 7.3(15) 2+
1 +1.6+3

−7 − 0.90(23) 0.91

1488 4+
2 546e 35.6(6) 4+

1 +3.0+10
−9 + 28.3(38) 25.8 4.2(3)

609 70.7(9) 2+
2 − 36.1(42) 33.2

1100e 14.9(3) 2+
1 − 0.40(8) 0.14

1635 6+
1 693 54.7(18) 4+

1 + 84(11) 64.8 1.64(21)

1678 2+
3 361e,h 5.1(20) 3+

1 − �20.6(44)g 28.3 9.1(9)
364e,h 9.8(21) 0+

2 + 38.3(91) 23.1
736f 8.54(53) 4+

1 − 0.96(4) 1.36
799h 24.1(14) 2+

2 + �1.86(41)g 0.23
1290f 14.7(9) 2+

1 − �0.10(2)g 0.002
1678f 33.8(21) 0+

1 − 0.063(14) 0.02

1760 0+
3 881h 7.8(16) 2+

2 − 13.4(41) 4.75 0.36(8)
1372h 58.6(22) 2+

1 − 10.9(25) 11.1

2005 3−
1 1063 166(4) 4+

1

1126h 29.1(18) 2+
2

1617 885(11) 2+
1

2005 0+
1 + B(E3) = 0.090(15)i

2086 2+
5 326j 0+

3 + 11÷48 23.4 �2.1(5)k

1144f 10.4(11) 4+
1 − 1.63(16) 4.9

1207h 18.2(15) 2+
2 +0.9+5

−3 + 0.99(61) 3.0
2086f 4.99(58) 0+

1 − 0.04(1) 0.07

2301 5(−) 1359h 15.6(12) 4+
1

2315 3(−) 1373h 14.2(11) 4+
1

1435h 31.1(18) 2+
2

2414 5(−) 1472h 13.7(11) 4+
1

2455 2+ 1138f 0.81(10) 3+
1 + �1.96(60)g 0.0002 0.20(4)

1514f 1.36(15) 4+
1 − 0.79(25) 0.0015

1576f 3.66(39) 2+
2 − �1.76(52)g 0.0009

2067h 14.8(15) 2+
1 − �1.82(54)g 0

2+
1 B(M1) � 0.020(6)g 0

2455f 2.69(30) 0+
1 + 0.14(4) 0

aThe multipole mixing ratios are taken from Ref. [23].
bB(E2) values are given in W.u. (1 W.u.(E2) = 0.003752 e2b2), B(M1) are given in µ2

N , and the B(E3; 0+
1 → 3−

1 ) ↑ value is given in e2b3.
cAdopted value taken from Ref. [25].
dThis transition is not observed. Contrary to Ref. [14], this transition does not play a relevant role for the population of the 4+

1 state.
eThese transitions are doublets, the individual intensities have been separated using the known branching ratios taken from Ref. [23].
fDetermined through the branching ratio from Ref. [23].
gUpper limits since the mixing ratio was unknown; B(E2) and B(M1) upper limits are given under the assumption of either pure E2 or
pure M1 transitions, respectively.
hThis transition was observed only in coincidence spectra.
iIn Ref. [26], a B(E3) ↑ = 0.085(13) e2b3 value is reported.
jThis transition is not observed directly, but it is included in the calculations for the Coulomb cross sections for a best match with the data.
kUpper limit since only a lower limit of the total width (�tot) of the state has been measured.
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(ii) 0+
2 level at 1314 keV and 3+

1 level at 1317 keV. The 0+
2

state at 1314 keV decays through the 434-keV γ ray
to the 2+

2 level and through the 925-keV transition to
the 2+

1 level. These lines are doublets with the two γ

rays coming from the 3+
1 level at 1317 keV. This 3+

1
state decays also to the 2+

2 level with Eγ = 438 keV
and to the 2+

1 level with Eγ = 925 keV. The energy
resolution achieved here did not permit us to resolve
these two doublets. Therefore, the intensities of each
doublet were fitted and the previously known branching
ratios [23] were used to obtain the individual respective
intensities.

(iii) 4+
2 level at 1488 keV. Similarly, the 546-keV γ ray from

the 4+
2 level at 1488 keV to the 4+

1 level is a doublet with
strong 553-keV transition. The individual intensity of
the 546-keV γ ray has been deduced from the known
branching ratio [23] and the measured intensity of the
4+

2 → 2+
2 , 609-keV transition. Again, no E4 transition

from the ground state was considered in the Coulomb
excitation process.

(iv) 2+
3 level at 1678 keV. The mixing ratio for the 2+

3→ 2+
1 transition is unknown. Due to low statistics,

the present data did not enable an angular distri-
bution measurement. In Table I, the mixed transi-
tions coming from this state have been calculated
by assuming pure E2 character, hence the resulting
upper limits. However, assuming that the 2+

3 →
2+

1 transition is of pure M1 character results in a
B(M1; 2+

3 → 2+
1 ) � 4.35(87) × 10−4 µ2

N value. This
small strength rules out the possibility that this state
could be a sizable fragment of the one-phonon 2+

1,ms
mixed-symmetry state [27].

(v) 2+
5 level at 2086 keV. This state does not decay to the 2+

1
level, which rules out the possibility that it could have
mixed-symmetry character. The 2+

5 → 0+
3 transition

is not observed either. However, the existence of this
transition cannot be ruled out due to the large energy
suppression factor for its intensity (Eγ = 326 keV).
This transition was included in the CLX calculations,
showing that the yields of the 2+

5 and the 0+
3 states

are barely influenced by the size of the 〈0+
3 ||E2||2+

5 〉
matrix element. A B(E2; 2+

5 → 0+
3 ) value below ∼50

W.u. will influence the yields of the 2+
5 and 0+

3 states
within their experimental error bars only.

(vi) 2+ level at 2455 keV. Since the mixing ratio for this 2+
→ 2+

1 transition is unknown [23], a pure E2 transition
was assumed, leading to an upper value B(E2; 2+ →
2+

1 ) � 1.82(54) W.u. Assuming pure M1 multipolarity
results in B(M1; 2+ → 2+

1 ) � 0.020(6) µ2
N . This small

value rules out a mixed-symmetry character for this
state.

The experimental low-lying energy level scheme of 126Xe is
displayed in Fig. 2(a). Figure 2(b) provides the corresponding
energy-level spectrum stemming from the sd–IBM-1 fit
described in the next section.

V. DISCUSSION

In order to quantify the degree of symmetry breaking in
126Xe, the procedure outlined in Ref. [14] was followed. The
sd–IBM-1 Hamiltonian was used,

H = εnd +
(

λ + 2

5
β

)
L · L + κQχ · Qχ + 4βT (3) · T (3),

(1)

FIG. 2. (Color online) (a) Low-energy, positive-parity levels of 126Xe. The levels observed in the present experiment are represented by solid
lines. Dashed lines indicate energy levels known from the literature [23]. (b) The sd–IBM-1 calculation for 126Xe (see text). The eigenstates are
arranged in (τ, σ ) multiplets according to the O(6) dynamical symmetry. The arrows represent the E2 transitions for off-yrast, quasi-K = 0
levels of particular interest. The thickness of the arrows and the numbers associated with them correspond to the absolute B(E2) values in W.u.
The dashed arrows are transitions with B(E2) � 0.1 W.u.
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similar to recent studies [13,14] with the fitted parameters ε0 =
0.712 MeV, β0 = −23.0 keV, λ0 = 13.5 keV, χ0 = 0.180,
κ0 = −41.9 keV, and eB = 0.12246 e2b2. The positive sign
of parameter χ0 is chosen in order to reproduce consistently
the Coulomb excitation yields of states populated by only
multistep processes. For a more detailed discussion on the
procedure for obtaining the Hamiltonian’s parameters, the
reader is referred to Refs. [13,28]. The results from this
numerical IBM calculation (done with the code PHINT [29]) are
presented in the rightmost column of Table I and in Fig. 2(b).
All calculated absolute E2 transition strengths must be
considered as predictions, except for the 2+

1 → 0+
1 transition.

The agreement between the calculated and the experimental
B(E2) values is good for all observed E2 transitions. The
agreement for the energy levels is also satisfactory (Fig. 2). It
is worth emphasizing that the IBM parametrization obtained
here is capable of describing the present comprehensive data
set in a consistent way. This provides confidence that the
calculated wave functions represent the nuclear quantum states
in the framework of the IBM correctly. The structure including
the ground-state band, the quasi-γ band, the quasi-K = 4
band, and the quasi-K = 0 band residing on top of the 0+

2
state reflects the expected pattern of a σ = N structure in
the O(6) symmetry. Correspondingly, the structure denoted by
the quasi-β band could be expected to represent a realization
of a structure with the O(6) quantum number σ = N − 2.
Surprisingly, this is not the case. For a quantitative analysis
of the presence of the O(6) and O(5) symmetries, the wave
functions for the first few 0+ and 2+ IBM states have been
projected onto the O(6) basis {|Jπ 〉(σ,τ )}, and the results are
presented in Fig. 3.

From Fig. 3, it is obvious that neither τ nor σ are perfect
quantum numbers. However, τ quantum numbers appear to be
quite well preserved, which indicates that O(5) is the relevant
symmetry. The components with a “correct” τ quantum
number exhaust about 90% or more of the total wave functions.
The best example is the ground state where more than 99% of
the wave function contains the right τ = 0 number. The small
admixtures with different τ values are such that the deviations
from the O(5) selection rules can easily be explained. For

example, the wave function of the 0+
2 state, the bandhead of

the three phonon K = 0 structure [Fig. 2(b)], contains a small
component with (σ = 7, τ = 0), which has an amplitude of
about 1.4% (see Fig. 3). This component makes an allowed
(�σ = 0,�τ = −1) E2 transition to the main component
of the 2+

1 state possible. This 2+
1 level, in turn, has the

correct (σ = 7, τ = 1) quantum numbers and an amplitude
of about 70%. At the same time, the main component of the
0+

2 state with (σ = 7, τ = 3) quantum numbers can proceed
through an allowed transition to the component of the 2+

1
state with (σ = 7, τ = 2). Analogously, the components with
(σ = 5, τ = 0) and (σ = 3, τ = 0) of the 0+

2 level can make
allowed transitions to the components with (σ = 5, τ = 1)
and (σ = 3, τ = 1) of the 2+

1 state (see Fig. 3). All these
�τ allowed contributions can add up and result in the mildly
collective 0+

2 → 2+
1 transition observed experimentally [see

Fig. 2(a)]. In the same way, the small components with
“incorrect” τ and σ in the wave functions of the 0+

3 and
the 2+

1 IBM states are the main reasons for the existence
of the otherwise forbidden 0+

“β” → 2+
1 transition, while main

contributions to the collective E2 transition between the 2+
4 and

the 0+
3 states come mostly from components with �τ = ±1.

The σ quantum numbers do, however, appear to have little
or no validity (again, see Fig. 3). Even the ground state contains
only 63.1% of σ = N = 7 value. For the states that were
thought to belong to the σ = N − 2 = 5 representation, the
0+

3 and the 2+
4 levels, the σ quantum number is completely

diluted. In fact, the components with σ = 5 account only for
20.2% and 42.3% of the total wave functions of these IBM
states (Fig. 3).

In an attempt to quantify the amount of symmetry breaking,
the fluctuations �q in the quantum number of states are
considered, where �q =

√
〈q2〉 − 〈q〉2, with q representing

the quantum number related to the symmetry under consider-
ation. For further details concerning the fluctuation analysis,
the reader is referred to Ref. [14]. For an exact symmetry,
�q = 0 for all states. All the other cases represent a situation
with broken symmetry. A perturbed and dissolved symmetry is
defined by the classification value �qclass ≡ δqmin/(2

√
2ln2),

FIG. 3. (Color online) Squared amplitudes of the components with different (σ, τ ) values in (a) the 0+
1,2,3 and (b) the 2+

1,2,4 sd–IBM-1 wave
functions.
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where δqmin is the minimum step the quantum number q can
change (e.g., δσmin = 2). The symmetry is then considered to
be perturbed, but dominant, if the fluctuations in the quantum
number are �q � �qclass. For �q > �qclass the symmetry
related to this quantum number is viewed as dissolved. The
classification values obtained for the O(6) symmetry and
the O(5) symmetry are �σclass = 0.849 and �τclass = 0.425,
respectively.

In Ref. [14], it was proposed that the degree of symmetry
breaking or preservation is quantified by the fluctuation in the
respective quantum number [σ in the case of O(6) and τ in the
case of O(5)] for states whose decay are sensitive to a particular
selection rule. For testing the O(6) symmetry, such a state is the
bandhead of the quasi-β band, while the decay of the bandhead
of the quasi-γ band is sensitive to the O(5) selection rules.
Indeed, the 2+

“γ ” → 0+
1 transition is σ allowed and τ forbidden,

while the 0+
“β” → 2+

1 transition is σ forbidden and τ allowed.
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FIG. 4. (Color online) Evolution of the (a) B(E2; 2+
“β” → 2+

1 )/
B(2+

1 → 0+
1 ) and the (b) B(E2; 2+

“γ ” → 0+
1 )/B(2+

1 → 0+
1 ) ratios as

functions of �σ and �τ (solid curves) on the linear trajectory
from the exact O(6) symmetry to the point defined by the IBM-1
parameters described in this work (stars). The vertical dashed lines
represent the classification values of �σ and �τ beyond which the
respective symmetry is dissolved. The circles represent the values
of the respective ratios and the fluctuations at the U(5) and SU(3)
dynamical symmetries of the IBM. The horizontal lines represent the
experimental values in 126Xe.

Therefore, the quantum number fluctuations in the 0+
“β” and the

2+
“γ ” states are considered to be measures for the symmetry

breaking and preservation of O(6) and O(5) symmetries for
the entire nucleus, respectively. To trace the evolution of these
observables through the parameter space of the IBM-1 from
the exact O(6) symmetry to the point defined by the model
parameters of Eq. (1), the following parametrization was used:
β(a) = βO(6) + a(βW − βO(6)), ε(a) = ε0a, and χ (a) = χ0a

[14]. When a = 1, H is the Hamiltonian found to best describe
126Xe. For a = 0, the IBM Hamiltonian corresponds to the
exact O(6) symmetry. The parameter βO(6) was also arbitrarily
fixed with βO(6) = −0.455 keV in order to obtain the head
of the σ = N − 2 structure as the third 0+ state in the exact
O(6) symmetry (a = 0). The evolutions of the two observables
sensitive to the O(6) and O(5) symmetries B(E2; 0+

“β” →
2+

1 )/B(E2; 2+
1 → 0+

1 ) and B(E2; 2+
“γ ” → 0+

1 )/B(E2; 2+
1 →

0+
1 ) with �σ and �τ are plotted in Figs. 4(a) and 4(b),

respectively.
A comparison between the evolution of the B(E2; 0+

“β ” →
2+

1 )/B(E2; 2+
1 → 0+

1 ) ratio and the experimental value
measured for 126Xe [Fig. 4(a)] provides the value
�σexp(0+

3 ;126Xe) = 2.03+0.08
−0.16, which lies well beyond the clas-

sification value of 0.849 and is comparable to the fluctuations
observed in the σ quantum number for the other dynamical
symmetries, U(5) and SU(3). The latter are also presented in
Fig. 4(a). The large value of �σexp obtained for the 0+

“β” state
of 126Xe implies that the O(6) symmetry is severely broken, in
fact, to an extent comparable to the degree of breaking of this
symmetry in other dynamical limits. For the 0+

3 state of 126Xe,
which was a candidate for the lowest σ = N − 2 state, the
O(6) symmetry is actually completely dissolved. In contrast,
Fig. 4(b) provides �τexp(2+

2 ;126Xe) = 0.221(14), a value lying
well below the classification value of 0.425, which indicates
that the O(5) symmetry is preserved.

The calculations of the σ and τ fluctuations can also be
extended to 128Xe by using the results of Ref. [15]. The fitted
parameters of the Hamiltonian of Eq. (1) for 124,126,128Xe are
summarized in Table II. In the case of 128Xe, these parameters
do not reproduce well the positions and the decays of the two
first excited 0+ states. Therefore, the fluctuations have been
calculated by using the IBM parameters reproducing best the
experimental B(E2; 0+

“β” → 2+
1 )/B(E2; 2+

1 → 0+
1 ) ratio (i.e.,

for a = 0.7). In this case, �σexp(0+
3 ;128Xe) = 1.55+0.12

−0.08 and
�τexp(2+

2 ;128Xe) = 0.19+0.03
−0.01. If we would have calculated the

fluctuations at the point corresponding to the parameters for
128Xe in Table II, we would have found slightly larger values
of �σexp(0+

3 ;128Xe) = 1.81 and �τexp(2+
2 ;128Xe) = 0.20. We

TABLE II. Parameters used in the sd–IBM-1 Hamiltonian for
128,126Xe and comparison with the parameters found in Ref. [13] for
124Xe.

ε0/κ0 χ0 β0/κ0 λ0/κ0 κ0 (keV) eB (e b)

128Xe −16.8 +0.173 0.76 −0.245 −53.0 0.115
126Xe −17.0 +0.180 0.55 −0.322 −41.9 0.122
124Xe −20.9 −0.257 0.563 −0.284 −34.91 0.142
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FIG. 5. (Color online) Evolution of the (a) τ and (b) σ

fluctuations characterizing the degree of O(5)-symmetry preservation
and O(6)-symmetry breaking in 124,126,128Xe. The horizontal dashed
lines represent the classification values above which the symmetry is
broken and under which the symmetry is preserved.

want to stress that in both cases the fluctuations in σ and
τ quantum numbers in 128Xe are smaller than the ones
for 126Xe.

The τ and σ fluctuations for the three isotopes 124,126,128Xe
are plotted in Figs. 5(a) and 5(b), respectively. In these three
Xe isotopes, it is observed that the O(6) symmetry is broken
[Fig. 5(b)], with the breaking being more pronounced in
124Xe and gradually decreasing with increasing number of
nucleons. On the contrary, the τ fluctuations lie always below
the classification value [Fig. 5(a)], which indicates that the
O(5) symmetry is only slightly perturbed in 124,126,128Xe. It is
worth stressing that such an analysis is made possible only by
the comprehensive set of absolute values of E2 transition rates
available from projectile Coulomb excitation measurements on
a light target combined with an sd–IBM-1 fit. The equivalent
B(E2) decay rates from the 0+

3 level are, at present, unknown in
130Xe and 132Xe. Thus, the degree of O(6)-symmetry breaking
in these two isotopes cannot be quantified in the same way.
However, these nuclei already lie beyond the region of the
O(6) symmetry. Indeed, in Refs. [15,30], 130Xe was proposed
as the best candidate among stable even-even Xe isotopes for
the E(5) symmetry, and 132Xe, with only two pairs of valence

neutrons away from the closed shell N = 82, is already close
to the U(5) symmetry, a feature that applies even more to 134Xe.

To conclude, it has been shown that none of the stable
even-even Xe isotopes should be considered as possessing the
O(6) symmetry of the IBM. The exclusion of the stable xenon
isotopes from the set of nuclei with dominant O(6) symmetry
raises questions about the extent to which any nucleus from
the A = 130 mass region can achieve O(6) symmetry.

VI. SUMMARY

126Xe has been studied using projectile Coulomb excitation.
In total, 22 absolute E2 transition strengths between low-spin
states have been determined. The experimentally observed
level energies, branching ratios, and the absolute transition
strengths are reproduced well by a general sd–IBM-1 calcula-
tion outside any dynamical symmetry. Symmetry breaking (or
preservation) was investigated by relating the fluctuations in
the quantum numbers directly to the experimental observables,
as suggested in Ref. [14]. In 126Xe, the O(6) symmetry was
found to be completely dissolved, while the O(5) symmetry is
only slightly perturbed. By using the same approach in 128Xe,
a similar result was obtained. The evolution of the O(6)- and
O(5)-symmetry breaking and preservation as a function of
neutron number for the light stable xenon isotopes indicates
a tendency of approaching the O(6) limit, but without ever
reaching it in the xenon isotopes. As a result, a similar detailed
investigation of the Ce, Ba, and Pt isotopes, which have been
previously associated with the O(6) symmetry, appears to be
warranted.
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