Тема 5: Ядрена физика

Modern Physics 2012–5(1)

Domine, quo vadis? - Eo Romam iterum crucifigi.

Modern Physics 2012–5(2)

ОРЕР (потенциал на еднопионен обмен)

1935 - Yukawa

 $V(r) = \frac{g_{\pi}^{2} (m_{\pi} c^{2})^{3}}{3 (Mc^{2})^{2} \hbar^{2}} \left[\vec{s}_{1} \cdot \vec{s}_{2} + S_{12} \left(1 + \frac{3R}{r} + \frac{3R^{2}}{r^{2}} \right) \right] \frac{e^{-r/R}}{r/R}$ $R = \hbar/m_{\pi} c = 1.5 \text{ fm}$

Потенциал на Hamada-Johnston(1962) $V = V_{C}(r) + V_{T}(r) S_{12} + V_{ls}(r) \vec{1}.\vec{S} + V_{LL}(r) L_{12}$ $L_{12} = \left(\vec{s}_1 \cdot \vec{s}_2\right) l^2 - \frac{1}{2} \left[\left(\vec{s}_1 \cdot \vec{l}\right) \left(\vec{s}_2 \cdot \vec{l}\right) + \left(\vec{s}_2 \cdot \vec{l}\right) \left(\vec{s}_1 \cdot \vec{l}\right) \right]$ $V_{C}(\mathbf{r}) = v_{0}(\vec{\tau}_{1},\vec{\tau}_{2})(\vec{s}_{1},\vec{s}_{2}) \mathbf{Y}(\mathbf{x}) [1 + \mathbf{a}_{C} \mathbf{Y}(\mathbf{x}) + \mathbf{b}_{C} \mathbf{Y}^{2}(\mathbf{x})]$ $V_{T}(r) = v_{0}(\vec{\tau}_{1},\vec{\tau}_{2})(\vec{s}_{1},\vec{s}_{2})Z(x)[1+a_{T}Y(x)+b_{T}Y^{2}(x)]$ $\mathbf{v}_0 = 3.65 \text{ MeV}$ V_{LS} (r) = g_{LS} $v_0 Y^2$ (x) $[1 + b_{LS} Y (x)]$ $x = r/1.43 \, \text{fm}$ V_{LL} (r) = g_{LL} $v_0 \frac{Z(x)}{x^2} [1 + a_{LL} Y(x) + b_{LL} Y^2(x)]$ $Z(x) = \left(1 + \frac{3}{x} + \frac{3}{x^2}\right) \cdot Y(x)$ $Y(x) = \frac{e^{-x}}{---}$

Основни свойства на ядрата

Маси и разпространение на изотопите. Енергия на свързване. Ядрен радиус. Разпределение на ядрения заряд и ядрената материя.

Modern Physics 2012-5(4)

Основни означения

1932 - Chadwick – открива неутрона – електрически неутрална частица с маса $m_n \approx m_p \ (m_p = 938.272 \text{ MeV}, m_n = 939.566 \text{ MeV}, \Delta m = 1.293 \text{ MeV})$

{протон, неутрон}≡нуклеон

Ядрена маса и енергия на свързване

m (N, Z)
$$c^2 = m_{arrow} c^2 - Z m_e c^2 + \sum_{A=1}^{Z} B_{1}^{e}$$

B (N, Z) $= A^* 1000 \text{ MeV}$
B (N, Z) $= \{Z m_p + N m_n - [m_{arrow} - Z m_e]\} c^2$
B (N, Z) $= \{Z (m_p + m_e) + N m_n - m_A\} c^2$
B (N, Z) $= \{Z m (^1H) + N m_n - m_A\} c^2$
По дефиниция: 1 u (amu) $= 1/12 M(^{12}C)$ или $M(^{12}C) = 12$ u

 $m_p = 1.00782503207(10) u$ $m_n = 1.0086649157(6) u$

1 u = 1.6605 10⁻²⁴ g c² = 931.494 MeV/u

Modern Physics 2012–5(6)

Експериментално определяне на ядрените маси

Необходима точност на измерването: 1% за определяне на относителното разпространение и 10⁻⁶ за определяне на масата!

Спектроскопия по маса

<u>Проблем:</u> за директно измерване е необходимо всички параметри да се калибрират с точност 10⁻⁶ ⇒ относителни измервания (метод на масовите дублети):

<u>Приемаме</u> m(¹²C) = 12.00000 u <u>Калибрираме</u> за маса 128 <u>Измерваме</u> m(C₉H₂₀) и m(C₁₀H₈) $\Longrightarrow \Delta = 0.09390032 \pm 0.0000012$

 $\Delta = m(C_9H_{20}) - m(C_{10}H_8) = 12m(^{1}H) - m(^{12}C) m(^{1}H) = (1/12)[m(^{12}C) + \Delta] = 1.00782503(1)$

<u>Калибрираме</u> за маса 28 и прилагаме същата процедура за C₂H₄ и N₂

 $m(^{14}N) = 14.00307396(2)$ Modern Physics 2012– 5(7)

Разпространение на изотопите

 $m(Kr) = 0.00356 m(^{78}Kr) + 0.0227 m(^{80}Kr) + = 83.8 u$

Modern Physics 2012–5(8)

Енергиен баланс при ядрени реакции $x + X \longrightarrow Y + v$ $m(x) c^{2} + m(X) c^{2} + T(x) = m(Y) c^{2} + m(y) c^{2} + T(Y) + T(y)$ $Q = [m(x) + m(X) - m(Y) - m(y)] c^{2}$ $^{1}H + ^{14}N \longrightarrow ^{12}N + ^{3}H$ $m(^{1}H) = 1.007825 u$ $m(^{14}N) = 14.003074 u$ $m(^{3}H) = 3.016049$ Q = -22.1355(10) $m(^{12}N) = 12.018613(1)$

Modern Physics 2012–5(9)

Енергия на свързване

 $m \begin{pmatrix} A \\ Z \\ X \\ N \end{pmatrix} = \left[Z m \begin{pmatrix} ^{1} \\ H \end{pmatrix} + N m_{n} - \frac{1}{c^{2}} B (N, Z) \right] \qquad \Delta = \left(Z m \begin{pmatrix} ^{1} \\ H \end{pmatrix} + N m_{n} - m \begin{pmatrix} ^{A} \\ Z \\ X \\ N \end{pmatrix} \right) c^{2}$

Енергетичния остатък/излишък от образуването на ядрена свързана система

Полу-емпирична масова формула

Граници на ядреното съществуване

Modern Physics 2012–5(13)

Експерименти по разсейване

Оптически аналог – снемане на дифракционна картина, която отразява масовото или зарядовото разпределение на ядрената материя

Обект	Скала [fm]	Енергия на електрона [MeV]
Атом	10 ⁵	0.01
Тежко ядро (Pb)	10	100
Протон	1	1000
Кварки	0.1 ?	10000

Modern Physics 2012-5(15)

Резултати от (е,е') експерименти

 $E_e = 420 \text{ MeV} \Rightarrow \lambda = 2.9 \text{ fm}$ $\theta = 42^{\circ}$ D.Sin (θ) = 1.22 λ $D = 5.28 \, \text{fm}$ $r(^{16}O) = 2.64 \text{ fm}$ $\theta = 51^{\circ}$ $= 4.56 \, \text{fm}$ D $r(^{12}C) = 2.28 \text{ fm}$

Modern Physics 2012–5(16)

Сечение за Ръдърфордовско разсейване

$$\sin^{2}\left(\frac{\theta}{2}\right) = \frac{1}{1 + (2 \text{ bE}/(Zz'e^{2}))^{2}} \qquad \cot\left(\frac{\theta}{2}\right) = \frac{2 \text{ bE}}{Zz'e^{2}} \qquad b = \frac{Zz'e^{2}}{2 \text{ E}} \cot\left(\frac{\theta}{2}\right)$$

• за фиксирани {b,E,z'} ъгълът на разсейване нараства с нарастването на Z

• за фиксирани {b,Z,z'} ъгълът на разсейване намалява с нарастването на Е

• за фиксирани {Z,z,E} ъгълът на разсейване намалява с нарастването на b

- по-малки прицелни параметри водят до по-големи ъгли на разсейване

Сечение за Ръдърфордовско разсейване

$$\frac{d\sigma}{d\Omega} = \left(\frac{ZZ \cdot e^2}{4E}\right)^2 \frac{1}{\sin^4 (\theta/2)} \qquad \frac{d\sigma}{d\Omega} = \left(\frac{ZZ \cdot e^2}{4\pi\epsilon_0}\right)^2 \left(\frac{1}{4E}\right)^2 \frac{1}{\sin^4 (\theta/2)}$$

Измерване на диференциалното сечение
$$\frac{dR}{d\Omega} = I_b n d \frac{d\sigma}{d\Omega}$$

$$\frac{dR}{d\Omega} = I_b \frac{N}{s} \frac{d\sigma}{d\Omega}$$

$$N = \frac{\rho S d}{A} N_A$$

$$\frac{dR}{d\Omega} = I_b \frac{\rho d}{A} N_A$$

$$\frac{dR}{d\Omega} = I_b \frac{\rho d}{A} N_A$$

Modern Physics 2012–5(18)

Еластично разсейване - квантово механично описание

V (r)

Златно правило на Ферми: $\lambda \left(\vec{k}_{i}, \vec{k}_{f} \right) = \frac{2 \pi}{\hbar} \left| M \left(\vec{k}_{i}, \vec{k}_{f} \right) \right|^{2} \rho (E_{f}) (s^{-1})$

$$f(\theta) = \frac{m}{2 \pi \hbar^2} \int V(\vec{r}) e^{\frac{i}{\hbar} \vec{q} \cdot \vec{r}} d\vec{r}$$

Modern Physics 2012–5(19)

Еластично разсейване от централен потенциал

$$\frac{\vec{k}_{i}}{\vec{\theta}} \vec{q} = \hbar (\vec{k}_{i} - \vec{k}_{f}) = \vec{p}_{i} - \vec{p}_{f}$$

$$|\vec{p}_{i}| = |\vec{p}_{f}|$$

$$f(\theta) = \frac{m}{2 \pi \hbar^{2}} \int V(\vec{r}) e^{\frac{i}{\hbar} \vec{q} \cdot \vec{r}} d\vec{r}$$

 $\vec{q} \cdot \vec{r} = q r \cos\theta'$ $d\vec{r} = r^2 \sin\theta' dr d\theta' d\phi$ $f(\theta) = \frac{m}{2\pi\hbar^2} \int_{\infty} V(r) r^2 dr \int_{\theta'} d\varphi' \int_{\theta'} e^{\frac{i}{\hbar} q r \cos\theta'} \sin\theta' d\theta'$ $\int_{0}^{\pi} e^{\frac{i}{\hbar}q \cdot r\cos\theta'} \sin\theta' d\theta' = -\frac{\hbar}{i q r} \int_{0}^{\pi} e^{\frac{i}{\hbar}q r\cos\theta'} d\left(\frac{i}{\hbar}q r\cos\theta'\right) = \frac{\hbar}{i q r} \int_{0}^{\frac{i}{\hbar}q r} e^{\xi} d\xi =$ $=\frac{\hbar}{iqr} (2i) \frac{e^{\frac{i}{\hbar}qr} - e^{-\frac{i}{\hbar}qr}}{(2i)} = \frac{2\sin(qr/\hbar)}{(r-r)}$ $f(\theta) = \frac{m}{2\pi\hbar^2} 2\pi \frac{2\hbar}{q} \int_0^\infty \frac{\sin(qr/\hbar)}{r} V(r) r^2 dr = \frac{2m}{r} \int_0^\infty \frac{\sin(qr/\hbar)}{r} V(r) r dr$ $\frac{P {}_{\text{Б}} D {}_{\text{Б}} D {}_{\text{Б}} D {}_{\text{C}} D {}_{\text{C}} C {}_{\text{C}} D {}_{\text{C}} D$ $\lim_{a \to 0} \int_0^\infty \sin(bx) e^{-ax} dx = \lim_{a \to 0} \frac{b}{a^2 + b^2} = \frac{1}{b} - \frac{d\sigma}{d\Omega} = |f(\theta)|^2 = \frac{4m^2}{q^4} \left(\frac{Ze^2}{4\pi\epsilon_0}\right)^2$ $q = 2psin(\theta/2)$

Резултати от (е,е') експерименти

Резонансен метод на Раби и ядрен магнитен резонанс

Modern Physics 2012-5(23)

Радиоактивно разпадане

Свързани разпади.

Естествена радиоактивност.

Приложения.

Modern Physics 2012–5(24)

Радиоактивност

≽α разпад -	${}^{A}_{Z}X_{N} \longrightarrow {}^{A-4}_{Z-2}Y_{N-2} + {}^{4}_{2}He_{2} : E_{\alpha} \approx 5 \text{ MeV},$	
≽β разпад -	${}^{A}_{Z}X_{N} \longrightarrow {}^{A}_{Z+1}Y_{N-1} + e^{-} + \overline{\nu}_{e} \beta$ - МИНУС	
	${}^{A}_{Z}X_{N} \longrightarrow {}^{A}_{Z-1}Y_{N+1} + e^{+} + v_{e} \beta$ - ПЛЮС	
	${}^{A}_{Z}X_{N} + e^{-} \longrightarrow {}^{A}_{Z-1}Y_{N+1} + \nu_{e}$ E3 $E_{\beta} \le 1$ Me	۶V

 $ightarrow \gamma$ разпад - електромагнитно лъчение $m E_{\gamma} \approx 0.05 \div 20$ MeV

 \succ спонтанно делене - ^AX \rightarrow ^{A1}Y + ^{A2}Z + Nn, A > 230

≻редки разпади - с излъчване на един или два протона (${}^{113}Cs \rightarrow {}^{112}Xe + p$), неутрон (${}^{13}Be \rightarrow {}^{12}Be + n$), ядрени клъстери ${}^{8}Be$, ${}^{12}C$, ${}^{16}O$ (${}^{114}Ba \rightarrow {}^{102}Sn + {}^{12}C$);

Произход

Естествена радиоактивност:

1) Радиоактивни изотопи, оцелели от момента на формиране на планетата (4.6×10⁹ у):

18 със Z < 80 ⁴⁰К (1.28×10⁸ y)

45 със Z > 80 238 U(4.46×10⁹ y), 232 Th(1.41×10¹⁰ y), 235 U(7.03×10⁸ y) 2) Радиоактивни изотопи, които се произвеждат непрекъснато: 14 N + n \rightarrow 14 C + p

Изкуствена радиоактивност:

⁴He + ²⁷AI \rightarrow ³⁰P + p (Joliot-Curie, Нобелова награда за химия 1935) Modern Physics 2012– 5(25)

Закон за радиоактивното разпадане

Ядрата се разпад по статистически закон – може да се предсказва поведението на ансамбъл от ядра, но е невъзможно да се каже точно кога дадено ядро ще се разпадне.

Ако в момента t имаме N ядра и нямаме външен принос на ядра, то:

Вероятността за разпадане за единица време на едно ядро е константа, която не зависи от възрастта на ядрото.

$$\frac{1}{2} = \frac{N(T_{1/2})}{N_0} = e^{-\lambda T_{1/2}} \qquad T_{1/2} = \frac{\ln 2}{\lambda}$$

Време на живот - средното време, през което ядрото оцелява

(dN/dt)

 $N(t) = N_0 e^{-\lambda t}$

 $\lambda = -$

Две последователни разпадания

Две последователни разпадания $\lambda_1 << \lambda_2$

Две последователни разпадания $\lambda_1 < \lambda_2$

Две последователни разпадания $\lambda_1 > \lambda_2$

$$N_{2}(t) = N_{0} \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right) \qquad N_{2}(t) = N_{0} \frac{\lambda_{1}}{\lambda_{1} - \lambda_{2}} e^{-\lambda_{2}t}$$

Modern Physics 2012-5(30)

N последователни разпадания

Естествена радиоактивност

Радиоактивно датиране

Проба - изградена от радиоактивен родител, атомите на родителя и дъщерните продукти не напускат пробата, в момента t=t₀ в има само атоми на родителя и няма външен принос!

$$\begin{array}{cccccccc} t = t_{0} & P \longrightarrow D & t = t_{1} \\ N_{P}(t_{0}) & & \lambda \\ & & & & \lambda \\ & & & & N_{P}(t_{0}) = N_{P}(t_{1}) + N_{D}(t_{1}) \\ & & & & N_{P}(t_{1}) = N_{P}(t_{0}) e^{-\lambda (t_{1}-t_{0})} \\ & & & \Delta t = t_{1} - t_{0} = \frac{1}{\lambda} \ln \frac{N_{P}(t_{0})}{N_{P}(t_{1})} = \frac{1}{\lambda} \ln \left(1 + \frac{N_{D}(t_{1})}{N_{P}(t_{1})}\right) \end{array}$$

Проба - изградена от радиоактивен родител, атомите на родителя и дъщерните продукти не напускат пробата, в момента t=t₀ в има атоми на родителя и "дъщерята" и няма външен

Възраст на планетата

Всички минерали, които са се образували заедно, трябва да имат една и съща възраст и еднакво изотопно отношение $N_D(t_0)/N_{D'}(t_0)$ въпреки че за всеки от тях $N_p(t_0)$ може да е различно $\longrightarrow N_P(t_1)/N_{D'}(t_1)$ и $N_D(t_1)/N_{D'}(t_1)$ ще са различни, но:

$$\int_{D} (t_{1}) = \frac{N_{P}(t_{1})}{N_{D'}(t_{1})} = \frac{N_{P}(t_{1})}{N_{D'}(t_{1})} \begin{bmatrix} e^{-\lambda\Delta t} - 1 \end{bmatrix} + \frac{N_{D}(t_{0})}{N_{D'}(t_{0})}$$

$$y = ax + b$$
⁸⁷Rb (T_{1/2} = 4.8 × 10¹⁰y) \rightarrow ⁸⁷Sr
⁸⁶Sr - стабилен

$$y = ^{87}Sr/^{86}Sr \qquad x = ^{87}Rb/^{86}Sr$$
Други
⁴⁰K(T_{1/2} = 1.28×10⁹ y) \rightarrow ⁴⁰Ar
²³⁵U (T_{1/2} = 7.04×10⁸y) \rightarrow ²⁰⁷Pb
²³⁸U (T_{1/2} = 4.47×10⁹y) \rightarrow ²⁰⁷Pb

Modern Physics 2012–5(34)

Въглероден метод за датиране на органични проби

 $^{14}N + n \rightarrow ^{14}C (T_{1/2}=5730y) + p$

константен добив Pавновесие: $\frac{14}{12}C$ $\approx 1.3 \times 10^{-12}$ 1 атом ¹⁴C на 10¹² атома ¹²C 1g (C) $\Leftrightarrow 6.0 \times 10^{23}$ атома $\Leftrightarrow 6 \times 10^{12}$ ¹⁴C специфична активност A(¹⁴C/g) ≈ 23 разпада/min <u>Проблеми</u>

• трудно приложим за времена по-дълги от 10T_{1/2} (сепаратори до 10⁵ у);

• неприложим за проби от последните 100 години поради интензивното използване на органични горива и ядрените опити в атмосферата Modern Physics 2012– 5(35)

Modern Physics 2012–5(36)
Основни закономерности

 ${}^{\mathbf{A}}_{\mathbf{Z}} \mathbf{X}_{\mathbf{N}} \longrightarrow {}^{\mathbf{A}-4}_{\mathbf{Z}-2} \mathbf{Y}_{\mathbf{N}-2} + \alpha$ $\alpha \equiv {}^{4}_{2} \mathsf{He}_{2} \text{ (1909 - Rutherford)}$

тежки ядра Кулонов ефект B (N, Z) = $a_{vol} A - a_{surf} A^{2/3} - a_c Z (Z-1) A^{-1/3} - a_{sym} \frac{(A-2Z)^2}{x} + \delta$ Най-леките а емитери Брой a емитери 30 ^{105,106}Te. ¹⁴⁴Nd 20 10 SEASETH ADS 170 160 180 200 220 240 260 Спонтанен процес – отделяне на енергия (кинетична) без външно

лонтанен процес – отделяне на енергия (кинетична) без външн въздействие!

α-разпада минимизира вътрешната енергията на дъщерната с-ма:

$$E_i - E_f > 0$$

Modern Physics 2012-5(37)

Закон на Geiger-Nuttall

Големи Q фактори => кратки времена на живот! Родителското Голяма разлика в B(Z,N) за Голям Q ядро е породителското и дъщерното \Longrightarrow фактор ⇒ нестабилно, т.е. ядро по-лесно се разпада 20 232Th Q (²³²Th) = 4.08 MeV × 2 Q (²¹⁸Th) = 9.85 MeV T_{1/2} = 1.4 × 10¹⁰ y × 10²⁴ T_{1/2} = 10⁻⁷ s /1 ▲²³⁸U ▲²⁴⁴Pu ²⁴⁸Cm ²⁵⁰Cf ,240Cm 226R2 10 og10 (t1/2 in seconds) 234Pu 252Fm 222_{Rn} 254_{ND} 246Fm 218P0 _252No $\lg t_{1/2} = -B \lg R_{\alpha} + C$ 226LJ 218_{Th} четно-четни ядра; $R_{\alpha} \sim T_{\alpha}^{3/2}$ 212Po 214Rn 216Ra линии с фиксирано Z -10 10 9 6 8 5 Q (MeV)

Modern Physics 2012–5(38)

Квантово описание на α -разпада

Тунелиране през ядрения кулонов бариер (Gamow, Gurney, Condon 1928)

Modern Physics 2012–5(39)

α-разпад

Modern Physics 2012-5(40)

• край на бариера:
$$\frac{e^2}{4\pi\epsilon_0} \frac{zZ'}{b} = Q \qquad b = \frac{e^2}{4\pi\epsilon_0} \frac{zZ'}{Q} \approx 42 \text{ fm}$$

$$\frac{b-a}{2} = \frac{42-9}{2} \text{ fm } \approx 16 \text{ fm}$$
•
$$k_2 = \sqrt{2 \text{ m } (0.5 \text{ (B+Q)} - \text{Q}) / \hbar^2} = \sqrt{(\text{m} / \hbar^2) (\text{B} - \text{Q})}$$

$$\approx \sqrt{((4.0026 \times 931.5 \text{ MeV}) / (197 \text{ MeV fm})^2) 22 \text{ MeV}} = 1.45 \text{ fm}^{-1}$$

$$k_2 \cdot \frac{b-a}{2} \gg 1 \qquad \sinh\left(k_2 \cdot \frac{b-a}{2}\right) \approx \frac{e^{k_2} \cdot 1/2 \text{ (b-a)}}{2}$$

$$T \approx \frac{1}{1+\frac{e^{k_2} \cdot (b-a)}{4}} \approx e^{-2.\frac{k_2}{2} \cdot \frac{(b-a)}{2}} = 1.7 \times 10^{-21}$$

$$T \left(\frac{Q}{2} = 6 \text{ MeV}\right) = 1.7 \times 10^{-21} \qquad T \left(\frac{Q}{2} = 5 \text{ MeV}\right) = 7 \times 10^{-28}$$

$$Q = 5 \text{ MeV}$$

$$b = \frac{e^2}{4\pi\epsilon_0} \frac{zZ'}{Q} \approx 51 \text{ fm} \qquad k_2 = \sqrt{(\text{m} / \hbar^2) (\text{B} - Q)} = 1.49 \text{ fm}^{-1} \qquad 2012-5(43)$$

Резултати

$t_{1/2} = 0$.693 $\frac{a}{c} \sqrt{\frac{mc^2}{2(V_0 + Q)}}$	$\exp\left\{2\sqrt{\frac{2\mathrm{m}\mathrm{c}^2}{(\hbar\mathrm{c})^2\mathrm{Q}}}\frac{\mathrm{z}\mathrm{Z}^{\mathrm{v}}\mathrm{e}^2}{4\pi\mathrm{e}_0}\right\}$	$\left(\frac{\pi}{2} - 2\sqrt{\frac{Q}{B}}\right)$
²²⁰ Th	Q=8.95 MeV	t _{1/2} ^{exp} = 10 ⁻⁵ s	t _{1/2} th =3.3 10 ⁻⁷
²²² Th	Q=8.13 MeV	t _{1/2} ^{exp} = 2.8 10 ⁻³ s	t _{1/2} th =6.3 10 ⁻⁵
²²⁴ Th	Q=7.31 MeV	t _{1/2} ^{exp} = 1.04 s	t _{1/2} th =3.3 10 ⁻²
²²⁶ Th	Q=6.45 MeV	t _{1/2} ^{exp} = 1845 s	t _{1/2} th =6.0 10 ¹
²²⁸ Th	Q=5.52 MeV	t _{1/2} ^{exp} = 6 10 ⁷ s	$t_{1/2}^{th} = 2.4 \ 10^{6}$
²³⁰ Th	Q=4.77 MeV	t _{1/2} ^{exp} = 2.5 10 ¹² s	t _{1/2} th =1.0 10 ¹¹
²³² Th	Q=4.08 MeV	t _{1/2} ^{exp} = 4.4 10 ¹⁷ s	t _{1/2} th =2.6 10 ¹⁶
	• не отчетохме вере	оятността за формиране на $lpha$ -ча	астица

<u>Причини за</u> <u>несъответ-</u> <u>ствията :</u> не отчетохме възможността за различни състояния в началната и крайната с-ма

• не отчетохме влиянието на ъгловия момент

• приехме, че ядрото е сферично → 4-5% промяна ⇒ фактор 5

Modern Physics 2012–5(46)

Modern Physics 2012–5(47)

1/2, която отнася част от енергията и импулса на процеса

$${}^{A}_{Z}X_{N} + e^{-} \longrightarrow {}^{A}_{Z-1}Y_{N+1} + \nu_{e}$$

$${}^{81}_{37}\text{Rb}_{44} + e^{-} \longrightarrow {}^{81}_{36}\text{Kr}_{45} + \nu_{e}$$

двоен *β*-разпад

 $^{A}_{7}X_{N} \longrightarrow ^{A}_{7+2}Y_{N-2} + 2e^{-} + 2\overline{\nu}_{e}$

Идея за микроскопичното обяснение на β-разпада

Слабо ядрено взаимодействие – W^{+,-} (80.4 GeV/c²), Z⁰ (91.2 GeV/c²)

Modern Physics 2012–5(49)

Маса на неутриното

Modern Physics 2012 - 5(50)

Modern Physics 2012–5(51)

Main spectrometer

Pre-spectrometer

diameter: 1.68m,

length: 3.38m

inner diameter of the cylindrical section: 9.8m, total length: 23.28m

inner surface: 650m²,

XHV conditions with a pressure of < 10-11 mbar in both spectrometers.

KATRIN - Karlsruhe Tritium Neutrino Experiment Modern Physics 2012– 5(52)

Modern Physics 2012–5(53)

There is a slight problem of transportability from Deggendorf to Karlsruhe: The tank is too big for motorways, and the canal between the rivers Rhine and Danube has to be ruled out, too. Thus, instead of a journey of about 400 km, the spectrometer has to travel nearly 9000 km as indicated in the map. Modern Physics 2012– 5(54)

у -разпад

Modern Physics 2012–5(56)

Ядрено делене: ядрени реактори и експлозиви

Modern Physics 2012– 5(57)

Защо ²³⁵U се дели, а ²³⁸U - не? $n + {}^{235}U \longrightarrow {}^{236}U^*$ $E_{ex} = [m ({}^{236}U^*) - m ({}^{236}U)] c^2$ $m(^{236}U^*) = m(^{235}U) + m_n = (235.043924u + 1.008665u) = 236.052589u$ $E_{ex} = (236.052589 u - 236.045563 u) 931.494 MeV / u = 6.5 MeV = 100 MeV / u = 1000 MeV / u = 1000 MeV / u = 1000 MeV / u =$ Енергия на активация за 236 U E_{f} (236 U) = 6.2 MeVДори неутрони с нулева кинетична енергия ще предизвикат делене. $n + {}^{238}U \longrightarrow {}^{239}U^* \qquad E_{ex} = [m ({}^{239}U^*) - m ({}^{239}U)] c^2$ $m(^{239}U^*) = m(^{238}U) + m_n = (238.050785u + 1.008665u) = 239.059450u$ $E_{ex} = (239.059450 u - 239.054290 u) 931.494 MeV / u = 4.8 MeV$ Енергия на активация за ²³⁹U $E_{f}(^{239}U) = 6.6 MeV$ Само неутрони с кинетична енергия, по-голяма от 1.8 MeV ще предизвикат делене. Сдвояване +0.56 MeV even - even $B(N, Z) = a_{vol} A - a_{surf} A^{2/3} - a_c Z(Z-1) A^{-1/3} - a_{sym} \frac{(A-2Z)^2}{2} + \delta \qquad \delta = \begin{cases} 0 & odd - even \\ 0 & odd - even \end{cases}$ -0.56 MeV odd - odd $n + 235[] \longrightarrow 236[]*$ $n + 238[] \longrightarrow 239[]^*$ $\frac{\text{CЪС СДВОЯВАНЕ}}{\text{E}_{\text{ex}}} \begin{pmatrix} 236 \text{U}^* \end{pmatrix} - \text{E}_{\text{ex}} \begin{pmatrix} 239 \text{U}^* \end{pmatrix} \approx \frac{\text{CЪС СДВОЯВАНE}}{23911*-2381} \frac{\text{без сдвояванE}}{23911*-2381}$ без сдвояване $^{236}U*=^{235}U+n$ ²³⁹U*= ²³⁸U+n $\approx 2 \delta = 1.2 \text{ MeV}$ $E_{ex} = E_{ex}^{np} + \delta$ $E_{ex} = E_{ex}^{np} - \delta$ 236 23911 Нечетните ядра имат по-високо сечение за 238U Modern^oPhys делене! 235U

Верижна реакция

Геометрични и времеви фактори $k = \eta \in pf (1 - l_f) (1 - l_f)$ $\mathbf{k}_{\infty} = \eta \in \mathbf{p} \mathbf{f}$ отчита физическите особености на отчита конкретната инженерна делящия се материал и забавителя реализация k = 1 – критична k > 1 – надкритична k < 1 – подкритична реакция реакция реакция изтичане на l_{f} , $l_{t} \ll 1$ ($l_{f} + l_{t}$) намалява с нарастване на повърхността ~ R^{-2} $k_{\infty} - k \simeq k (l_{f} + l_{t})$ нараства с нарастване миграционния път на неутроните M $k_{\infty} - k \propto \frac{M^{2}}{R^{2}}$ k = 1 $R_{c} = \frac{\pi M}{\sqrt{k_{\infty} - 1}}$ минимален размер на сфера, осигуряващ критичност неутрони $\tau = \tau_t + \tau_d \qquad t \qquad k \qquad t + \tau \qquad t + 2\tau \dots \qquad dN = (kN - N) \qquad \frac{dt}{\tau}$ забавяне 10⁻⁶ s 10⁻³ s дифузия **N**(t) = N₀ $e^{\frac{(k-1)}{\tau}t}$ Контролни пръти - Cd k = 1.01 $(k - 1) \approx 10 \text{ s}^{-1}$ забавител забавител бавитег O n N $N(1s) / N_0 = e^{10}$ a **Modern Physics 2012–5(60)** Охладител

Ядрени реактори:

класификация по тип на неутрони

1) Реактори на топлинни неутрони (thermal reactors) – изискват забавител

- + могат да работят с естествен или слабо обогатен U
- голяма централна зона (core, ядро) много радиоактивен отпадък

2) Реактори на междинни неутрони (1-100 кeV) – главно експериментални

+ по-малко забавител \rightarrow по-малък обем + възможност за използване на ²³²Th 232 Th + n $\rightarrow ^{233}$ Th $\stackrel{T_{1/2}=22 \text{ m}}{\stackrel{\beta^-}{\rightarrow}}$ $\stackrel{T_{1/2}=27 \text{ d}}{\stackrel{\gamma^-}{\rightarrow}}$

Гориво: течно UF₄

Ядрени реактори

класификация по тип на неутрони

1) Реактори на топлинни неутрони (thermal reactors) – изискват забавител

- + могат да работят с естествен или слабо обогатен U
- големи ядра много радиоактивен отпадък
- 2) Реактори на междинни неутрони (1-100 кeV) главно експериментални
 - + по-малко забавител по-малък обем $T_{1/2}=22 \text{ m}$ $T_{1/2}=22 \text{ m}$ $T_{1/2}=27 \text{ d}$
 - + BЪЗМОЖНОСТ ЗА ИЗПОЛЗВАНЕ НА ²³²Th $\rightarrow 233$ Th $\rightarrow 233$ Th $\rightarrow 233$ Pa $\rightarrow 233$ U β^{-233} V
- 3) Реактори на бързи неутрони (размножители, fast breeders)
 - изискват високо обогатено гориво (>20% ²³⁹Pu или ²³⁵U)
 - + компактни удобни за двигатели
 - + използват тежки материали за охладител → по-високи работни температури (550°С) → по-висока топлинна ефективност
 - + по-рядко се нуждаят от презареждане
 - + могат да произвеждат горивото си

$$^{238}U + n \longrightarrow ^{239}U \xrightarrow{T_{1/2}=23 \text{ min}} ^{239}Np \xrightarrow{T_{1/2}=2.3 \text{ d}} ^{239}Pu$$

Modern Physics 2012–5(63)

20% PuO₂ 80% UO₂

Ядрени реактори

класификация по тип на забавителя

- 1) Графитни реактори 12С
- 2) Реактори на лека вода (Light Water Reactors)
 - + евтина
 - + ясни химични свойства
 - не позволява използването на естествен U, поради голямото сечение за реакцията $n + p \rightarrow d + \gamma$ обогатено гориво ~3%
 - + отрицателна температурна обратна връзка
- 3) Реактори на тежка вода (Heavy Water Reactors) D_2O
 - скъпа
 - + позволява използването на естествен U
- 4) Течни метали
- 5) Газове

Ядрени реактори класификация по тип на охладителя

- 1) Вода под налягане (Pressurized Water Reactors)
 - + константно налягане → по-добър контрол върху забавянето на n
 - + електрическата част е отделена от ядрената
 - работи при високо налягане (~100 ат.) и температура (~300°С);
- 2) Кипяща вода (Boiling Water Reactors)
 - + конструктивно по-прост
 - + работи при по-ниски температури и налягания
 - охладителя/забавителя се намира
 - в две фази
 - електрическата част не е отделена от ядрената

Ядрени експлозиви

²³⁸U, ²³²Th – могат да се делят, но само ²³⁵U, ²³³U и ²³⁹Pu – се делят от всякакъв при определени условия; вид неутрони;

Критична маса – минималната маса за даден делящ се материал и конфигурация, при която настъпва критична верижна реакция.

1) Достатъчно материал за достигане на надкритична маса – използва се обогатяване > 90% (оръжейно качество на обогатения материал, weapon graded)

2) Иницииране на реакцията — осигуряване на първоначалните неутрони

Ро-Lі смес:	$^{218}Po \longrightarrow ^{214}Pb + \alpha$		
	$^{216}Po \longrightarrow ^{212}Pb + \alpha$	Малък линеен ускорител за р	
AIII-De CMeC	$^{210}\text{Po} \longrightarrow ^{206}\text{Pb} + \alpha$	(p,n) реакция	

 α + ⁷Li \rightarrow ¹⁰B + n

3) Удържане на конструкцията максимално дълго → максимално количество от делящия материал претърпява делене

СИНХРОНИЗАЦИЯТА е важен елемент от конструкцията.

Modern Physics 2012–5(67)

Ядрени експлозиви

Little boy -Хирошима

Fat Man - Нагазаки

64 kg U (~ 80%) ~100% от чистата критична маса 4000 kg само 1% от него е претърпял делене 13-16 kTNT

6.2 kg Pu ~39 % от чистата критична маса 4630 kg ~20% от него е претърпял делене 21 kTNT

Modern Physics 2012-5(68)

Термоядрен синтез

Modern Physics 2012-5(69)

Термоядрен синтез в звездите (Слънцето)

Слънцето $L_{\odot} = 4\pi k I_{\odot} A^2$ *k* ≈ 1 $A = 1 \text{ a.u.} = 1.497 \times 10^{11} \text{ m}$ $I_{\odot} = 1.366 \text{ kW/m}^2$ = 1.96 cal/min/cm² $L_{\odot} = 3.83 \times 10^{26} \text{ W}$ Слънчевата енергия, която Земята получава, е средно $1.740 \times 10^{17} \text{ W} = 174 \text{ млн. GW}$ Световното производство на електроенергия е ~ 2 хил. GW...

Енергия, излъчвана от

Управляем термоядрен синтез

Кулонова бариера

$$V_C = \frac{e^2}{4\pi\varepsilon_0} \frac{Z_1 Z_2}{\left|R_1 + R_2\right|}$$

За реакция (3) V_C ≈ 0.4 MeV.

1)
$$d + d \rightarrow_{2}^{3}$$
He + n + 3,27 MeV,
2) $d + d \rightarrow t + p + 4,03$ MeV,
3) $d + t \rightarrow n + \alpha + 17,59$ MeV
и за получаване на тритий
4) $_{3}^{6}$ Li + n $\rightarrow t + \alpha + 4,79$ MeV.

Мощност на Dед. обем D-D 107 Bremsstrahlung 4 keV Power density 105 Плътност на йоните ≈10²¹ m⁻³ 40 keV 10 100 1000 Temperature (keV)

Термоядрена бомба

Най-мощната взривена бомба
 най-мощната взривена бомба
 е била тристъпкова
 с 50 Mt TNT (=2.1x10¹⁷J).
 За "капсул-детонатор" служи "обикновена"
 ядрена бомба, осигуряваща T ~ 3x10⁸K.

Edward Teller- Stanaw Ulam design (two-stage bomb) Modern Physics 2012– 5(72)