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In most textbooks on nuclear physics1–3 the set of radioactive decay chain equations is solved
analytically for a maximum of three nuclides. The general Bateman solution4 is given as a final
result or only with a brief mention of the elaborate recursive procedure needed to obtain it.3 Here,
a short method for obtaining the general solution is demonstrated. ©2002 American Association of

Physics Teachers.
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The set of equations for a nonbranched decay chain is

dN1

dt
52l1N1 ,

~1!
A

dNk

dt
5lk21Nk212lkNk ,

wherelk is the decay constant of thekth nuclide, andNk

5Nk(t) is the number ofkth nuclei at timet. We first assume
simple initial conditions, for example,N1(t50)5N10,
Nk(t50)50 for k>2. The Laplace transformation5 is ap-
plied to both sides of Eq.~1!:
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E
0

`

e2st
dNk

dt
dt5e2stNk~ t !u0

`1sE
0

`

e2stNk~ t !dt
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whereÑk(s) is the Laplace transform ofNk(t).

Equations~2a! and ~2b! are algebraic inÑk(s), and we
find

Ñ1~s!5
N10

l11s
, ~3a!
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5•••5
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N10. ~3b!

The inverse Laplace transform of Eq.~3! is given by the
Bromwich integral:5

Nk~ t !5
1

2p i Eg2 i`

g1 i`

estÑk~s!ds, ~4!
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where the constantg is chosen so that all singularities o

Ñk(s) are on the left-hand side. In the present case all s
gularities at (2l1 ,2l2 , . . . ) are negative and simple
poles. The integral may be closed by an infinite semicircle
the left half-plane of the complex plane. Because allÑk(s)
are of the formP/Q(s), whereP are constants andQ(s) are
polynomials of degree>1, the path integral along the sem
circle tends to zero as the radius tends to infinity.5 Then by
the residue theorem, we obtain
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Resj@estÑk~s!#, ~5!

where Resj denotes the residue of the function in the squ
brackets ats52l j . Hence,

Resj@estÑk~s!#5 lim
s→2l j

@~s1l j !e
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Finally, by doing the sum, we obtain:

Nk~ t !5N10lk21lk22 . . . l1(
j 51

k
e2l j t

) i 51(iÞ j )
k ~l i2l j !

. ~7!

Alternatively, the same result can be obtained witho
complex integrals. According to the Heaviside theorem:6

Nk~ t !5(
j 51

k
P

Q8~2l j !
e2l j t, ~8!

and the substitution ofP andQ8 leads to Eq.~7!.
Equation~7! represents the Bateman solution for the giv

initial conditions. It is easily generalized to the most com
mon case of nonzero initial conditions withNk.0 for k
.0. For example, ifNm(t50)5Nm0Þ0, we should add a
similar expression for the subchain starting ati .m:
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In this way, for the most common case,Ni(t50)5Ni0 for-
some or all of the nuclides, the final general solution is o
tained:
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.

~10!

A generalization of this method for a branched dec
chain is easy, but this case is normally outside the scop
graduate courses in nuclear physics.
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