ядрени модели

Увод

Теория на ядрото засега не съществува, поради две основни трудности:

1) Ядрото е система от N тела - N е голямо за точно аналитично решение и малко за прилагане на статистически методи.

2) Ядрените сили нямат класически аналог, за техните свойства има откъслечна информация. Математически подход (квантова механика) - е доказал своята приложимост за атомни системи и за електромагнитното взаимодействие. Необходима е релативистична квантова теория на елементарните частици (все още се развива).

Ядрени модели - опростена теория с подходящ математически апарат и аналогии с класически системи се търси обяснението на някои свойства на ядрата.

Няма модел, обясняващ всички свойства на ядрата.

Добър ядрен модел трябва да обясни експериментални факти и да предскаже опитно проверяеми нови свойства. Пример - капковият модел (аналогия на ядрената материя с капка електрично заредена течност с добавяне на два нови члена - енергия на симетрия и енергия на сдвояване дава добро съвпадение с измерените маси за ядрата. Но той дава само тенденцията в масите, има систематични отклонения в предсказаната маса, които се обясняват в слоестия модел (аналогия с атомния строеж). Слоестият модел също не може да обясни редица свойства, свързани с колективни движения. В колективните модели ядрото се разглежда като твърдо тяло или течност с характерните степени на свобода: ротация на несферично тяло, вибрации на повърхността на сферична капка и пр.

В едночастичните модели нуклеоните се движат независимо един от друг в усредненото поле на общия за всички нуклеони силов център.

В обобщените модели ядрото се представя като "ядка" с движещи се около нея един или няколко външни нуклеона: ядката се описва с колективен модел, а външните нуклеони - с деформирано осреднено поле.

Всеки модел включва определен брой параметри, но с много параметри се постигне добро съвпадение с *някои* данни, но не могат да се предсказват нови свойства.

Слоест модел

Слоест модел - Мария Гьоперт-Майер и Хаксел, Янсен и Суес (1948-49 г.).

Прилагането на принципа на Паули към електроните в атомната обвивка води до слоест строеж на атомите, запълнени вътрешни обвивки и валентни електрони.

Трудности при ядрата

- Липса на силов център - нуклеоните се движат в създадения от самите тях потенциал.

- Стабилни "орбити" в толкова плътна система, каквато е ядрото (10³⁸ нуклеона/cm³), а нуклеоните почти се допират един до друг. Но за нуклеоните е в сила принципа на Паули - два нуклеона не могат да заемат една и съща орбита! При запълненени нива сблъскването е само еластично.

Факти в полза на слоестия строеж – магични числа

От свойствата на стабилните ядра: ядрата с Z = 2, 8, 20, 50 и 82 имат голям брой стабилни изотопи: Sn (Z = 50) -10, Pb (Z = 82) – 4. Ядра с N = 2, 8, 20, 50, 82, 126 също имат голям брой стабилни изотони.

Формулата за масата дава силни отклонения за ядра с *N* или *Z* равни на 28, 50, 82, 126.

Енергията за отделяне на два протона или два неутрона има скок при *N* или *Z* равни на 28, 50, 82, 126

Е*нергията на свързване* показва голяма стабилност за ядра с N или Z = 2, 8, 20, 28, 50, 82, 126. Пример с леките ядра ²H, ³H, ⁴He, ⁵He, ⁵Li

ядро	2 H(D)	$T(^{3}H)$	⁴ He	⁵ He	⁵ Li
B ($\epsilon = B/A$), MeV	2,2 (1,1)	7,7 (2,6)	28,3 (7,1)	27,3 (5,5)	6,3 (5,3)

⁵Не и ⁵Li се разпадат за 10^{-22} s на α - и протон или неутрон.

Данни за квадруполните моменти - ядра с този брой неутрони или протони са сферични.

Модел – потенциали и магични числа

Несдвоеният нуклеон се движи в усредненото поле на останалите нуклеони - това усреднено (или самосъгласувано поле) играе роля на силов център.

Средният потенциал се избира да следва същата радиална зависимост като плътността на ядреното вещество: за средни и тежки ядра плътността е постоянна (с дифузен край). За леки ядра се избира осцилаторен потенциал.

Потенциал на Уудс-Саксон

$$V(r) = -\frac{V_0}{1+e^{\frac{r-R}{a}}}$$

Нива на хармоничния осцилатор Сферично-симетричния хармоничен осцилатор има енергия

$$E_N = \left(N + \frac{3}{2}\right)\mathbf{h}\mathbf{w}$$
 c $N = 0, 1, 2,...$

Нивата на енергия на хармоничния осцилатор са еквидистантни и има двукратно израждане при N = 2 и 3, трикратно при N = 4 и 5 и т.н. Главното квантово число е N = 2(n-1)+1, 1 е орбиталното квантово число, а *n* е цяло число (n = 1, 2, 3,...), показващо за кой път се появява дадено орбитално квантово число. Възможните стойности на *N*, *n*, 1, означението, броят на възможните състояния и магичните числа са показани в таблицата само първите три магични числа се получават правилно.

Ν	п	1	означение	2(2 l +1)	магично
					число
0	1	0	1 <i>s</i>	2	2
1	1	1	1 <i>p</i>	6	8
2	1	2	1d	10	
	2	0	2s	2	20
3	1	3	1f	14	
	2	1	2p	6	40
4	1	4	1 <i>g</i>	18	
	2	2	2d	10	
	3	0	3 <i>s</i>	2	70
5	1	5	1 <i>h</i>	22	
	2	3	2f	14	
	3	1	3 <i>p</i>	6	112

Използването на друг потенциал – правоъгълен или потенциала на Саксон-Уудс –

снема израждането по орбитален момент: нивата с по-голямо **l** се спускат под нивата с помалко **l**, и двете под нивата на осцилатора.

Нива на хармоничния осцилатор и потенциал на Саксон-Уудс. В дясната част са показани енергетичните нива с отчитане на спин-орбиталното взаимодействие.

Силно спин-орбитално взаимодействие

Спин-орбитално взаимодействие – отчетено с член $V_{so}(r)(\mathbf{l}.s)$ в потенциала. Интеграл на движението е $\mathbf{j} = \mathbf{l} + \mathbf{s}$. Това "остатьчно взаимодействие" разцепва всяко ниво с $\mathbf{l} \neq 0$ на две нива. Добро квантово число е j, което има две стойности $j = \mathbf{l} - 1/2$ и $j = \mathbf{l} + 1/2$. Броят на нивата е 2j+1 и при дадено \mathbf{l} е същият, както и по-рано: всяко j има 2 стойности $(\mathbf{l} - 1/2)$ и $(\mathbf{l} + 1/2)$:

$$2j+1=2(1-\frac{1}{2})+1+2(1+\frac{1}{2})+1=2(21+1).$$

Всяко ниво с отличен от нула орбитален момент се разцепва на две поднива

 $V_{so}(r)$ се приема константа - *a*. Към E_0 (без с.-о. вз.) се добавя $\Delta E = -a(\mathbf{l}.s)$. $(\mathbf{l}.s)$ се изчислява от $\mathbf{j}^2 = (\mathbf{l} + \mathbf{s})^2$,

$$\begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{l} & s \end{pmatrix} = \frac{1}{2} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ j^2 & \mathbf{l}^2 & \mathbf{r}^2 \end{bmatrix}.$$

Допълнителната енергия е

$$\Delta E_{\mathbf{l}j} = -a \left(\mathbf{\tilde{l}} \cdot \mathbf{s} \right) = -\frac{a \mathbf{h}^2}{2} \left[j(j+1) - \mathbf{l}(\mathbf{l}+1) - s(s+1) \right].$$

3a
$$j = \mathbf{l} + 1/2$$
 $E_{\mathbf{l}j} = -\frac{a\mathbf{h}^2}{2}\mathbf{l}$,

a 3a
$$j = \mathbf{l} - 1/2$$
 $E_{\mathbf{l}j} = \frac{a\mathbf{h}^2}{2}(\mathbf{l} + 1).$

Нивото с $j = \mathbf{l} + 1/2$ пада под нивото $E_0 \sim \mathbf{l}$, а това с $j = \mathbf{l} - 1/2$ отива над нивото E_0 , разцепването е несиметрично спрямо E_0 . Разстоянието между двете нива след разцепването е пропорционално на (2 \mathbf{l} +1).

Нивото 1g с j = 9/2 (с 2(9/2) + 1 = 10 нуклеона) се спуска надолу и затова магичното число става 50 (вместо 40, както е без спин-орбитално взаимодействие). В следващия слой могат да се разположат нивата $1h_{11/2}$, $3s_{1/2}$, $2d_{3/2}$, $2d_{5/2}$, $1g_{7/2}$ със съответно брой нуклеони 12 + 2 + 4 + 6 + 8 = 32, които прибавени към 50 нуклеона от предишния слой ще дадат магичното число 50 + 32 = 82, което е и правилното магично число.

Нивата за протони и неутрони са почти еднакви при леки ядра, но за по-тежки ядра, вследствие на асиметрия спрямо електромагнитното взаимодействие, те се отместват едни спрямо други.

Успехи на едночастичния модел

Спинове на ядра с несдвоен нуклеон в основно състояние

I=*j* на несдвоения нуклеон (или ваканция в запълнен слой).

Пример: ${}^{15}_{8}O_7$ и ${}^{17}_{8}O_9$. Деветият неутрон в ${}^{17}_{8}O_9$ е на $d_{5/2}$. Измереният спин на ${}^{17}_{8}O_9$ е I = 5/2. В ${}^{15}_{8}O_7$ не достига 1 неутрон до запълнена обвивка. Ваканция в ниво $p_{1/2}$ и спинът трябва да е ${}^{1/2}$ - съответства на измерения спин.

Нивата на ¹⁷О и ¹⁹О

Пример 2 - ${}^{59}_{27}$ Со₃₂ - не достига протон на слоя Z = 28 на ниво $f_{7/2}$ - спинът на ядрото трябва да е 7/2. Това се потвърждава експериментално.

Възбудени едночастични нива

Първите възбудени състояния също намират обяснение в рамките на слоестия модел. Ако несдвоеният нуклеон сменя орбитата си с най-близката възможна (незапълнена), ядрото

преминава в друго едночастично състояние - отчетливо се проявява около магичните ядра. Пример : спектър на деутроните от реакцията ${}^{208}_{82}Pb_{126} + {}^{2}_{3}He_1 \rightarrow {}^{209}_{83}Bi_{126} + {}^{2}_{1}H_1$.

Енергетичен спектър на нееластично разсеяните деутроните от реакцията

$${}^{208}_{82}\text{Pb}_{126} + {}^{3}_{2}\text{He}_{1} \rightarrow {}^{209}_{83}\text{Bi}_{126} + {}^{2}_{1}\text{H}_{1}$$

при ъгъл на регистриране $\theta_{nab} = 110^{\circ}$.

В реакцията между ${}^{3}_{2}$ Не₁ и ${}^{208}_{82}$ Pb₁₂₆ един протон от ${}^{3}_{2}$ Не₁ се захваща от оловото, образувайки ${}^{209}_{83}$ Bi₁₂₆ като ${}^{3}_{2}$ Не₁ се превръща в деутерий (${}^{2}_{1}$ Н₁). ${}^{209}_{83}$ Bi₁₂₆ е във възбудено състояние, зависещо от орбиталата, на която се намира прехвърления протон. Измерва енергията на излъчения деутрон. От ЗЗЕ и ЗЗИ следва, че на всяко състояние на 209 Bi ще съответства определена енергия на деутрона (в реакцията се получават 2 ядра). Всеки от пиковете в спектъра е свързан с реакция до дадено състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. От реакция до дадено състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Съответства на състояние на 209 Bi. Съответства на състояние на 209 Bi съответства на състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Най-ниската енергия на 209 Bi съответства на състояние на 209 Bi. Востветства на състояние на 209 Bi. 21 Ai 21

Ядрена изомерия

"Острови" на изомеризъм - области в диаграмата A(N) с много на брой изомери - естествено обяснение в рамките на слоестия модел. При ядра с брой на протоните (или на неутроните) около 50, 82, 126 има близко разположени нива с голяма разлика в *j*. Първият "остров" на изомерни ядра се дължи на непосредствената близост на нивата $g_{9/2}$ и $p_{1/2}$ под запълнения слой 50, вторият остров – на близостта на нивата $h_{11/2}$ и $s_{1/2}$ под запълненото ниво 82 и третият остров при запълнено ниво със 126 неутрона – на близостта на нивата $i_{13/2}$ и $p_{1/2}$.

Острови на изомеризъм

Магнитни моменти (ограничен успех)

За ядра с нечетно *А* магнитният момент на ядрото се определя от магнитния момент на последния несдвоен нуклеон. Неговият магнитен момент трябва да се определи от орбиталния и спиновия му моменти.

Моделът на Шмид разглежда магнитния момент на ядра с нечетно А: магнитният момент на ядрото се определя от магнитния момент на последния несдвоен нуклеон, чийто магнитен момент трябва да се определи от орбиталния и спиновия му моменти.

Диаграми на Шмид – изчисленият магнитен момент на ядро с един несдвоен нуклеон: нечетен протон (горе) и нечетен неутрон (долу).

Шмид изчислява магнитните моменти на ядра с нечетно A при предположение, че той се дължи само на магнитния момент на несдвоения нуклеон. Опитните данни лежат върху линиите на Шмид само в редки случаи – когато има несдвоен нуклеон над запълнена "магична" обвивка от нуклеони, напр. ${}^{3}_{2}$ He₁, ${}^{19}_{9}$ F₁₀, ${}^{17}_{8}$ O₉. Останалите ядра имат стойности на магнитните си моменти между двете криви. Успехът е ограничен, съвпадение с изчисления магнитен момент има само в граничните случаи на нуклеон или дупка над магичен слой. Но във всички останали случаи *измерените магнитни моменти са между линиите на Шмид*.

Магнитният момент при един липсващ нуклеон от запълнен слой (дупка) е равен на магнитния момент на частица в същото място. Формално се добавят две частици с противоположни моменти, едната участва в комбинирането на моментите на четири частици със сумарен нулев момент, а втората частица ще определя момента на ядрото.

Схема, която показва качествено защо магнитният момент на дупка е равна на магнитния момент на частица. Квадруполни моменти (ограничен успех и провал с големите квадруполни моменти) Квадруполният момент на ядрото е равен на $(3z^2 - r^2)$ на несдвоения нуклеон с максимална проекция по оста z ($m_j^{max} = +j$). Нека частицата е протон. Ако неговият момент е насочен максимално близко по оста z, орбитата му се намира в равнината xy и ядрото ще стане сплеснато (c < a) с отрицателен квадруполен момент и големина $Q_p = -\langle r^2 \rangle$, $\langle r^2 \rangle$ е средната стойност на радиус-вектора на този протон. Квантовата-механика дава за квадруполния момент на единичен протон в състояние j

$$\langle Q_{\rm p} \rangle = -\frac{2j-1}{2(j+1)} \langle r^2 \rangle$$

Схема, която показва качествено защо квадруполният момент на дупка е равна на квадруполния момент на частица с обратен знак.

"Дупка" в запълнен слой дава квадруполен момент, равен и с обратен знак на квадруполният момент, дължащ се на частица в същия слой.

Частица (протон) над запълнен слой ще предизвиква сплескване на ядрото, а протонна дупка в запълнен слой – издължаване.

	изч. <i>Q</i>	измерен Q					
		Единична	частица	Единична	дупка		
Състоя-		Протон	неутрон	Протон	неутрон		
ние							
$1p_{3/2}$	-0,013	–0,0366 (⁷ ₃ Li)		+0,041 (¹¹ ₅ B)	+0,053 (⁹ ₄ Be)		
$1d_{5/2}$	-0,036	$-0,12(^{19}_{9}F)$	$-0,026(^{17}_{8}\text{O})$	$+0,14(^{27}_{13}\text{Al})$	+0,201 (²⁵ ₁₂ Mg)		
$1d_{3/2}$	-0,037	-0,083 (³⁵ ₁₇ Cl)	$-0,064\left({}^{33}_{16}{ m S} \right)$	+0,056 ($^{39}_{19}$ K)	+0,45 (³⁵ ₁₆ S)		
		_	_	+0,	+0,2		
$d_{5/2}$	0,036	$0,12(^{19}_{9}F)$	$0,026(^{17}_{8}\text{O})$	$14(_{13}^{27}Al)$	01 ($^{25}_{12}$ Mg)		
		_	_	+0,	+0,4		
$d_{3/2}$	0,037	0,083 (³⁵ ₁₇ Cl)	$0,064 \left({}^{33}_{16} S \right)$	$056\left({}^{39}_{19}\mathrm{K}\right)$	5 (³⁵ ₁₆ S)		

Данни за изчислените измерените стойности на Q (по знак измерените съвпадат с изчислените).

Трудности:

1) ненулев квадруполен момент при несдвоен неутрон. Неутрална частица на орбита над запълнен слой не би трябвало изобщо да дава квадруполен момент.

2)Основна трудност - ядрата с междинно запълване на нивата: при средни и тежки ядра квадруполните моменти са до 10 пъти по-големи от очакваните.

Колективни модели

Възбудените състояния с ниска енергия на четно-четните ядра не могат да се обяснят със слоестия модел. Първото възбудено състояние 2^+ се намира на около 1 MeV над основното. Пример - ${}^{130}_{50}$ Sn₈₀ - магичен брой протони и липсват два неутрона до запълване на слоя 82.

Нискоенергетичните нива на ${}^{130}_{50}$ Sn $_{80}$

Тези два неутрона имат j = 11/2. Ядрото преминава във възбудено състояние, ако един от неговите несдвоени или "валентни" нуклеони премине на свободно ниво с по-висока енергия. Несдвоени неутрони могат да се получат само след разкъсване на двойка и преминаване на единия от тях на следващото свободно ниво. Но то се намира много по-високо от 1,2 MeV, колкото е първото възбудено нива на $^{130}_{50}$ Sn₈₀.

Може да се допусне разкъсване на двойка в по-долно ниво, напр. от $s_{1/2}$, и единият неутрон отива на свободното ниво $h_{11/2}$. Тогава сумарният момент от двата неутрона $j_1 + j_2$ има възможни стойности (11/2) - (1/2) = 5 или (11/2) + (1/2) = 6.

Друга възможност е да се разкъса двойка от още по-долния подслой $d_{3/2}$ и пак едната частица да отиде в нивото $h_{11/2}$ -сумарният момент може да бъде от 4 до 7. Нивата *s* и *d* имат положителна четност, а нивото h – отрицателна, всички възбудени нива трябва да са с отрицателна четност. Такива нива има при около 2 MeV. Но това са изкуствени комбинации и нивото 2^+ би било изключение само за ¹³⁰ Sn.

Но почти всички четно-четни ядра имат подобна структура на възбудените нива!!!

Еднакви за много ядра свойства, които не могат да се обяснят с възбуждания на няколко "валентни" нуклеона. Обясняват се с движения на ядрата като цяло, т.нар. колективни степени на свобода.

Движения на "ядката" от запълнени слоеве:

1) вибрации на сферичните ядра (първите възбудени нива)

2) ротация при деформираните ядра.

Вибрации на ядрената материя

За A < 150 колективните степени на свобода са вибрации около равновесната сферична форма. В рамките на капковия модел повърхността на ядрото се представя с

 $R(t) = R_0 \left[1 + \alpha_{\lambda\mu}(t) Y^{\mu}_{\lambda}(\theta, j) \right] - \alpha_{\lambda\mu}(t)$ са зависещи от времето коефициенти,

 $Y^{\mu}_{\lambda}(\theta, j)$ - сферичните функции. $\alpha_{\lambda\mu}$ не са напълно независими, тъй като симетрията на отражение изисква $\alpha_{\lambda\mu} = \alpha_{\lambda(-\mu)}$ при предположение за несвиваемост на ядрената материя. Функциите $Y^{\mu}_{\lambda}(\theta, j)$ за $\lambda = 0, 1, 2$ са следните

$$I = 0 Y_0^0 = \frac{1}{\sqrt{4p}}$$

$$I = 1 Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos\theta Y_1^{\pm 1} = \mathbf{m} \sqrt{\frac{3}{8\pi}} \sin\theta e^{\pm ij}$$

$$I = 2 Y_2^0 = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1) Y_2^{\pm 1} = \mathbf{m} \sqrt{\frac{15}{8\pi}} \cos\theta \sin\theta e^{-ij}$$

$$Y_2^{\pm 2} = \sqrt{\frac{15}{32\pi}} \sin^2\theta e^{\pm 2ij}$$

За $\lambda = 0$ и при $\alpha_{00} = a_0 \cos(\omega t)$ се получава $R(t) = R_0 [1 + a_0 \cos(\omega t)]$ – ядрото запазва сферичната си симетрия, само радиусът му се изменя синусоидално с времето. Тази "*мода на вибрация*" се нарича "*дишане*" и отговаря на свиване на ядрената материя – свързано е с енергия над 10 MeV.

При $\lambda = 1$ (диполна мода) $\alpha_{10} = a_0 \cos(\omega t)$

$$R(t) = R_0 \left[1 + a_0 \cos(\omega t) \sqrt{\frac{3}{4\pi}} \cos\theta \right]$$

Това са *осцилации на центъра на ядрото около равновесното положение*. Точките с $\theta = \pm \pi/2$ върху повърхността на ядрото остават неподвижни. Ако всички протони се изместват в едната страна, а неутроните – в другата - *"гигантски диполен резонанс"* наблюдава се при енергии над 10 MeV. Тези два случая не представляват интерес за обяснение на нивата 2⁺ при около 1 MeV.

Квадруполна мода на вибрация с $\lambda = 2$.

При $\alpha_{20} = a_0 \cos(\omega t)$ радиусът на ядрото се изменя с времето според израза

$$R(t) = R_0 \left[1 + a_0 \cos(\omega t) \sqrt{\frac{5}{16\pi} (3\cos^2 \theta - 1)} \right]$$

Неподвижни остават 4 точки като сферичното ядро ту се сплесква, ту се издължава.

Повърхността на деформираните ядра също може да вибрира. β -вибрации и γ -вибрации (квадруполни). При β -вибрациите се изменя дългата ос на ротационния елипсоид, *параметъра на деформация* β , и колебанието е по напречна посока на главната ос на елипсоида. При γ -вибрациите се изменя т.нар. *параметър на неаксиалност* γ , отчитащ отклонението на формата на ядрото от аксиалната симетрия. При тези вибрации промяната във формата на ядрото става в равнината xy, а дългата ос на ротационния елипсоид остава

неизменна. Тези два вида вибрации са характерни и за сферичните ядра. При $\lambda = 2$ има две стойности на μ : $\mu = 0$ за β -вибрациите и $\mu = 2$ за γ -вибрациите.

Двата вида квадруполни вибрации. β-колебанията са при опъване и свиване по полярната ос, а γ-колебанията стават при неподвижни полюси и пренос на материя към екватора.

Възбужданията от вибрация на ядрото - ϕ онони. Енергията на фононите е **h** $_{00}$. Всеки фонон представлява бозон (цял спин) и при квадруполните вибрации той отнася момент 2 **h**. Енергията на състоянието, построено чрез квадруполните фонони е

$$E = \mathbf{h}\omega \sum_{m=-2}^{+2} \left(n_{\mu} + \frac{1}{2} \right)$$
 или $E = \mathbf{h}\omega \left(N + \frac{5}{2} \right)$

 $N = \sum n_{\mu}$ дава броят на фононите.

За четно-четните ядра първото възбудено състояние от квадруполна вибрация отговаря на еднофононно възбуждане с промяна на спина с 2 и с положителна четност, тъй като $\pi = (-1)^{\lambda}$. Второто възбудено състояние се получава с излъчване на *два фонона* и трябва да се намира на двойно по-висока енергия. В отсъствие на остатъчно взаимодействие това състояние е изродено. Спинът на това ниво се получава от сумиране на моментите на двата фонона, и възможностите са от |2-2| до 2 + 2, т.е. 0^+ , 1^+ , 2^+ , 3^+ и 4^+ . Вълновата функция на състоянието

е *симетрична*. Така възможностите 1 и 3 отпадат и остават само 0^+ , 2^+ , и 4^+ .

Изчислените и измерени нива на възбуждане на ядрото $^{120}_{52}$ Te₇₂.

Вибрационният модел предсказва добре най-ниско лежащите възбудени нива на това сферично ядро. Нивата от двуфононното възбуждане са няколко: това означава наличие на остатъчно взаимодействие, което снема израждането.

Ротация на деформирани ядра

Деформираните ядра имат допълнителна степен на свобода – въртене около ос, отлична от оста на симетрия на ядрото.

Експериментални данни за деформация на ядрата

Необикновено високи квадруполни моменти в областите 150 < A < 190 и A > 220 имат - указание за силно отклонение на формата им от сферична. За деформираните ядра, предполагайки форма на ротационен елипсоид с голяма и малка полуоси *с* и *a*, се въвежда параметър на деформацията $\beta = \Delta R/R_0$. Издължените ядра имат положителен квадруполен момент, а сплеснатите – отрицателен. Но когато издължено ядро се върти около ос, минаваща по равнината на симетрия на елипсоида, в лабораторната координатна система то ще изглежда като сплеснато и спектроскопичният квадруполен момент ще бъде отрицателен. Връзката между спектроскопичния и собствения квадруполни моменти е

$$Q = Q_0 \frac{3K^2 - I(I+1)}{(I+1)(2I+3)}$$

За K = I = 2 спектр. кв. момент е $Q = -(2/7)Q_0$. За ядра със стабилна деформация (150 < A < 190) Q = -2 b (фигурата!). Тогава $Q_0 = +7$ b и коефициента на деформация е b = 0,29 – такива ядра имат разлика в двете полуоси около 0,3 – не е "слабо отклонение" от сферичната форма!

Въртене на ротационен елипсоид около ос, минаваща по равнината на симетрия.

Данни за спектроскопичния квадруполен момент на ядрата в нивото 2⁺

При добавяне на нуклеони отклонението от сферична форма е малко - предизвиква вибрации на ядрото. При малка деформация в четно-четните ядра има колебания около равновесната сферична форма - нивата на хармоничния осцилатор са далеч едно от друго. При по-големи деформации, предизвикани от добавяне на още нуклеони, осцилаторните нива

се сближават с разширяване на "параболата" на потенциалната енергия. Но добавяне на още нуклеони предизвиква рязка промяна в потенциалната енергия – стабилна става формата с постоянна деформация. Деформираните ядра могат да притежават и вибрационна степен на свобода – вибрации на деформираната повърхност, но основното е *ротацията*, проявяваща се с ротационни ивици.

Зависимост на параметъра
 β^2 от броя на неутроните в областта
 82 < N < 126

Ротационни нива

Кинетичната енергия на въртящо се тяло е $E_R = \frac{J_{\text{eff}}\omega^2}{2} = \frac{\mathbf{l}^2}{2J_{\text{eff}}}$, J_{eff} е ефективният инерчен момент на ядрото, ω – ротационната честота, а ъгловият (в случая ротационния) момент е $\mathbf{l} = J_{\text{eff}}\omega$. В квантовата-механика собств. ст. на ъгловия момент е $\mathbf{h}^2 R(R+1)$ - кв.

$$E_R = \frac{\mathbf{h}^2}{2J_{\text{eff}}} R(R+1) \,.$$

С увеличаване на R се добавя ротационна енергия на ядрото и възбудените ядрени състояния съответстват на *ротационна ивица*. Основното състояние на *четно-четните* ядра е винаги 0^+ , а симетрията на ядрата спрямо отражение ограничава възможните стойности на R да бъдат само *четни*. Въжда се ротационна константа

$$C_{\rm rot} = \frac{\mathbf{h}^2}{2J_{\rm eff}}.$$

Енергията на последователно възбудени при ротацията състояния ще бъде

 $E(0^+) = 0; E(2^+) = 6 C_{\text{rot}}; E(4^+) = 20 C_{\text{rot}}; E(6^+) = 42 C_{\text{rot}}; E(8^+) = 72 C_{\text{rot}}; \dots$ или

 $E(2^+)$: $E(4^+)$: $E(6^+)$: $E(8^+)$: $E(10^+) = 1:3,3(3):7:12:18,3(3)$: ... - правило на интервалите

Ротационен спектър на ¹⁶⁴ Er. Първото възбудено състояние 2⁺ е с енергия 91,4 keV, откъдето $C_{rot} = 15,2$ keV. Следващите енергетични нива, изчислени според правилото на интервалите, ще бъдат $E(4^+) = 20.15,2 = 305$ keV (299,5 keV), $E(6^+) = 42.15,2 = 640$ keV (614,4 keV), $E(8^+) = 72.15,2 = 1097$ keV (1024,6 keV), $E(10^+) = 110.15,2 = 1672$ keV (1518,1 keV),... Числата в скобките показват измерената за това ядро енергия за съответното ниво.

От сравнение на изчислените (неизменна $C_{\text{rot}} = \frac{\mathbf{h}^2}{2J_{\text{eff}}}$) с измерените стойности на енергиите се

вижда доста добро съвпадение, но има и систематично отклонение, увеличаващо се с нарастване на ротационното квантово число. Обяснение - ядрото ¹⁶⁴Er не е твърд ротатор, с увеличаване скоростта на въртене инерчният момент расте, става "*опъване*" на ядрото по дължината му.

Инерчният момент на ротационен елипсоид за два гранични случая: твърд ротатор и идеален флуид (тяло със същата форма). За A = 170 и предположение за твърд ротатор $C_{rot} \sim 6$ keV, а запълнен с течност $C_{rot} \sim 90$ keV. Измерената C_{rot} е 15,2 keV - 2-3 пъти по-малък инерчен момент от този на твърдо тяло, но и 5-6 пъти по-голям от този на течно тяло (с неговите форма и размери)

Деформирано ядро, въртящо се около оста у с ъглова скорост ω.

Ядро с ненулев спин *j* в състоянието, от което започва ротационната ивица.Сумарният момент на ядрото ще бъде I = j + R. Измерва се не самият момент j, а неговата проекция по оста *z*, *j_z*. Нека *j_z* = **h***K*. От схемата се вижда

$$|\frac{\mathbf{r}}{R}|^{2} = |\frac{\mathbf{r}}{I}|^{2} - j_{z}^{2} = \frac{\mathbf{h}^{2}}{2J_{\text{eff}}} [I(I+1) - K^{2}]$$

За ядро с несдвоен нуклеон в основно състояние К е проекцията на неговия момент по оста z.

 $-K^2 \left(\frac{\mathbf{h}^2}{2J_{\text{eff}}}\right)$ е един и същ член за всички нива в ивицата - няма да промени относителното

разстояние между нивата. За четно-четни ядра резултатът е рот. ивица, построена върху възбудено ниво.

При A е нечетно има несдвоен нуклеон и симетрията е нарушена - не може да се очакват само четни спинове за нивата в една ротационна ивица, а K, K + 1, K + 2, K + 3,..., всички те са полуцели (K е полуцяло), а четността на всички състояния ще бъде като тази на несдвоения нуклеон. Ако неговата четност е отрицателна, цялата ротационна ивица, построена върху това състояние ще бъде с отрицателна четност.

При деформираните ядра има и свръхдеформирани състояния с отношение на главните полуоси на ядрото до 2:1 - поведение на твърд ротатор с еквидистантност на γ-линиите в

спектъра. Енергията на ү-лъчите е

$$E_{\gamma} = E_{R+1} - E_{R-1} = \frac{\mathbf{h}^2}{2J_{\text{eff}}} [(R+1)(R+2) - (R-1)R] = 2C_{\text{rot}}(2R+1) ,$$

а разстоянието между 2 съседни γ -линии ще бъде при $\Delta R = (R + 1) - (R - 1) = 2$

$$\Delta E_{\gamma} = 2C_{\rm rot} [2(R+1) + 1 - 2(R-1) - 1] = 8C_{\rm rot}$$

- разстоянието между две съседни у-линии в ротационната ивица е постоянно.

Експериментално наблюдаване на ротационна ивица в супердеформираното ядро ¹⁵²Dy

Понятие за обобщени модели. Диаграми на Нилсън.

Едночастични състояния, движещи се в средния деформиран ядрен потенциал - нивата вече няма да са същите като при сферично симетричен потенциал.

Диаграми на Нилсън, показващи енергетичните нива в зависимост от деформацията. По абсцисната ос е нанесена деформацията

Диаграми на Нилсън - кривите дават енергията на дадено ниво в зависимост от деформацията. С нарастване на деформацията нивата не само се разцепват, но се приближават и смесват. Положителните деформации са за издължените (prolate) ядра, а отрицателните – за сплеснатите (oblate). При сферично-симетричен потенциал има израждане на нивата по магнитното квантово число *m_i*. Това израждане сега се снема -

остава само двукратно израждане, дължащо се на симетрията спрямо равнината xy на деформираното ядро - нивата с $+m_j$ и $-m_j$ ще имат една и съща енергия. Четността на нивата ще се определя от орбиталното квантово число **l** : нивата с четно **l** (*s*, *d*,...) са с положителна

четност, а тези с нечетно $\mathbf{l}(p, f, ...) - c$ отрицателна.