ЯДРЕНА СПЕКТРОСКОПИЯ

БЕТА-РАЗПАД. БЕТА-СПЕКТРИ

І. ХАРАКТЕРНИ ОСОБЕНОСТИ НА БЕТА-РАЗПАДА

В първата лекция вече коментирахме типовете β-разпад (β⁻, β⁺, **E.3.**) и енергетическите условия за тях. Някои нуклиди (нечетно-нечетни) могат **едновременно** да търпят и трите типа β-разпад. Енергията на β-разпада е **точно определена** (дискретна) от разликата в масите (енергиите) на началния и краен атом:

$$E_{\beta-} = [M_{aT}(A, Z) - M_{aT}(A, Z + 1)]c^2$$
 (напр. за β^- разпада)

Експериментални факти, довели до въвеждане на неутриното:

1. Бета-разпада е открит 1911 г. (Байер, Хан и Майтнер). Още през 1914 г. с βспектрометри са били изследвани β-спектри и е намерено, че те са непрекъснати, т.е. срещат се β-частици с енергии от **0** до **E**_m (максимална енергия).

Фиг.115. Непрекъснат β-спектър.

 $E_{max} = E_{\beta}$; $E_{cp} < E_{\beta}$

Става очевидно, че при β-разпада се появява **дефицит** ("изчезване") **на енергия**. Изказвани са хипотези:

- че енергията се губи при някакъв атомен процес (или взаимодействие на електроните с веществото на много къси разстояния - Л.Майтнер 1922 г.). Тази хипотеза е опровергана (1927 г. Елис и Вустер) чрез калориметрично изследване на разпада на ²¹⁰Bi (RaE), E_m = 1,05 MeV. В калориметъра се определя Е_{ср.експ.} ≈ 0,35 MeV.
- че закона за запазване на енергията се нарушава. Хипотезата е отхвърлена с отвращение, като крайно неправдоподобна.

2. Известно е, че:

При А четно - основното състояние на ядрото, както и цялата система от възбудени състояния имат **цели спинове**.

При А нечетно - основното и възбудените състояния имат полуцели спинове.

При β-разпада **A = const** и характера на спина не се променя, т.е. при β-разпада се отнася **целочислен** момент на количество на движение. Но пълния момент, отнасян от електрона, може да бъде само **полуцял** :

j = | + s

където: І - орбитален момент - винаги цял; s - спин на електрона - 1/2.

Очевидно, в бета-разпада се "губи" частица с полуцял спин.

3. "Губещата" се частица е **неутрална**, тъй като закона за запазване на заряда не е нарушен.

В 1931 г. Паули изказва хипотезата, че в бета-разпада участвува още един фермион - неутрино **ν** (още преди откриването на неутрона) с маса, много помалка от тази на електрона, който отнася губещата се енергия при β-разпада и **взаимодейства много слабо** с веществото.

Е.Ферми дава името **"неутрино"** на хипотетичната частица. Според Ф.Хойл (астрофизик), Паули и Бааде (астрофизик) се обзалагат, че неутриното никога няма да бъде наблюдавано експериментално (според Паули). 25 години по-късно

в експериментите на Рейнис и Коуен е регистрирано свободно **v**_e и Паули плаща облога (каса шампанско, което било любимото му питие).

II. ЛЕПТОНИ, ЛЕПТОНЕН ЗАРЯД

Лептоните са леки частици, участвуващи в β-разпада и процесите, контролирани от слабото взаимодействие. Известни са три "семейства" лептони:

Съществуват 3 типа лептонен заряд: I_e, I_µ, I_τ., които (засега) се съхраняват поотделно.

Разпади, съхраняващи лептонния заряд:

$$n \rightarrow p + e^- + \tilde{e} (I_e - cъхранен)$$

 $r \rightarrow \mu^+ + \mu ; \mu^+ \rightarrow e^+ + e^+ \tilde{\mu} (1) (I_e, I_\mu - cъхранени)$

Последния е известния "π - μ - е" експеримент, който обработвате в лабораторията по Експериментална ядрена физика. <u>Забележка:</u> Енергетичния спектър на е⁺ е непрекъснат, поради 3 частичковата кинематика и енергията на покой на μ-она се разпределя средно по равно между 3-те частици.

$$^{+} \rightarrow e^{+} + e^{+} (l_{e}, l_{e}, l_{e}, c$$
ъхранени)
 $\mu^{+} + \mu^{+} (l_{\mu}, l_{e}, c$ ъхранени)

Адроните (и ү-квантите) имат 0 лептонен заряд.

Ако се допусне, че $\nu_e \equiv \nu_\mu$, се появява възможност за разпади от типа:

 $\mu^+ \to e^+ + e^+ + e^-$ (2) (анихилация $_e + \tilde{}_{\mu}$ в момента на образуването)

Експериментите са показали, че вероятността за тази реакция е поне 10³ - 10⁴ пъти по-малка от същата за реакцията :

$$\mu^{+} \rightarrow e^{+} + e^{+} + \tilde{\mu}$$
 (1)

Т.е. че:

e**≢** μ

и се съхранява не общия лептонен заряд, а именно l_e и l_µ **поотделно**. За сега ще изчакаме да видим резултатите от подготвяните експерименти за доказване на "осцилациите" на неутриното.

Експериментално доказателство че

Реакцията

е забранена - несъхранение на I_e. По предложение на Б.М.Понтекорво (1946 г.) през 1955 г. (Девис) е направен опит за регистрация на **реакторни анти-v**_e, като:

$$\tilde{e} + {}^{37}CI \rightarrow {}^{37}Ar + e^{-1}$$

³⁷Ar (Е.З.- 35 дни) \rightarrow ³⁷Cl + v_e (при Е.З. се отделят Ro-кванти и Оже-електрони)

Облъчвани са 4000 | **CCI**₄ (тетрахлорметан). Образувания ³⁷Ar (радиоактивен) се увлича с **He** (газ, пропускан през обема **CCI**₄). Ar се отделя от **He** върху охладен активен въглен (**He** не се поглъща), след което се вкарва в обема на Гайгеров брояч. Оценена **горна граница** на сечението за

 $\sigma_{eксn} \le 0,25.10^{-45} \text{ cm}^2$ на неутрон, което е много по-малко от разчетното сечение, ако се допусне, че

и реакцията не е забранена.

Допълнение: слънчеви електронни неутрино

Модел на Бете (1939 г.) за термоядрената енергетика на Слънцето:

Ако ⁴Не е достатъчно (както е в Слънцето), вървят и реакциите:

- 1. ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$; ${}^{7}\text{Be} + e^{-} \rightarrow 7\text{Li} + v_{e}$ (E.3.) p + ${}^{7}\text{Li} \rightarrow 2{}^{4}\text{He}$; $E_{v} = 0,860 \text{ MeV}$

E_{vmax} = 14 MeV - 0,005% от пълния неутринен поток.

Слънцето е мощен източник на v_e и реакцията : $v_e + n \rightarrow p + e^-$ не е забранена.

Дейвис (от 1968 до 1978 г.) провежда аналогичен експеримент:

$$v_e$$
 + ³⁷Cl \rightarrow ³⁷Ar + e⁻

Облъчвани са 610000 | C₂Cl₄ (перхлоретилен) на 1,5 km под земята (методиката за отделяне на ³⁷Ar - същата). Образуват се 0,3 - 0,4 атома ³⁷Ar на ден (регистрира се борното неутрино). Експериментално получената стойност е 2 - 3 пъти **по-малка** от очакваната скорост - 0,9 ³⁷Ar на ден, като се има предвид термоядрения цикъл на Бете ("дефицита" е потвърден в много неутринни лаборатории). Възможно е "осцилациите" на неутриното (подготвят се експерименти) да оправят нещата, без да се налага да се отказваме от цикъла на Бете !

III. ПОНЯТИЕ ЗА ТЕОРИЯТА НА БЕТА-РАЗПАДА

Теория на Ферми (1934 г.): Изградена е върху предположението, че взаимодействието е слабо "точково" (късодействащо) взаимодействие между 4 фермиона (2 нуклона и 2 лептона).

Вероятността за бета-прехода W се получава от теорията на възмущенията:

$$W = \frac{2}{h} |\langle f| \widehat{H} |i\rangle|^2 \frac{dn}{dE}$$

където < f| |i > - вълнови функции на крайното и началното състояние; dn/dE - плътност на крайните енергетични състояния; H_β - хамилтониан на взаимодействието.

$$W = \frac{2}{h} \left| \int_{Nf^*} e^* \cdot \widehat{H} \right|_{Ni} d \left| \frac{dn}{dE} \right|_{Ni}^2 dn$$

dτ - елементарен обем.

Тъй като вълновите функции са 4 - компонентни биспинори, оператора на взаимодействието представлява сложна комбинация от тях. Възможни са 256 комбинации линейно независими типове взаимодействия, но от изискването за Лоренц-инвариантност остават 5.

$$H_{\beta} = \sum_{i=1}^{5} C_i H_i = C_S S + C_V V + C_T T + C_A A + C_P P \quad (\Sigma C_i = 1)$$

където трансформационните свойства на компонентите са :

	∆P	ΔI
S – скалар	не	0
V – вектор	не	0
Т – тензор	не	0,
		±1

А – аксиален вектор	не	0, ±1
Р – псевдоскалар	не	0

където **ΔР** - промяна на четността при β-прехода; **ΔI** - промяна на спина на ядрото при прехода.

Изборът на вариант на теорията е извършен при сравняване с експеримента. По настоящем е възприет **варианта (V – A)** (универсално взаимодействие на Ферми), което описва добре всички разпади, контролирани от слабото взаимодействие (включително и на μ-оните и *τ*-оните).

Правила за отбор за разрешените бета-преходи:

$$\Delta I = |I_f - I_i|; \Delta P = \pi_i \pi_f$$

I_f, I_i - спинове на крайното и начално ядро; π_i , π_f - четности на началното и крайно ядрено състояние; ΔP = +1 (не); ΔP = -1 (да).

Поради това, че "радиуса на действие" на силите на слабото взаимодействие $\rho \ll \mathbf{R}$ ($\mathbf{R} \approx 1,5.10^{-13}$ cm - радиус на ядрото), в първо приближение може да се счита, че орбиталните моменти, отнасяни от неутриното и β -частицата, са нула - $\mathbf{I}_e = \mathbf{I}_v = \mathbf{0}$. В такъв случай $\Delta \mathbf{I}$ се определя от спиновете (собствени моменти) на **е** и **v**.

1. Ако двойката (e↑, v↓) се излъчва в синглетно състояние (т.е. с антипаралелни спинове – сумарен собствен момент 0):

 $S_e + S_v + I_e + I_v = 0$, т.е. $\Delta I = 0$ (спиновото състояние не се променя) 0 0 0

Тези β -преходи са **Фермиевски преходи** - ΔP - не ; **0** \rightarrow **0** преходи.

2. Ако двойката (e↑, v↑) се излъчва в триплетно състояние (паралелни спинове – сумарен собствен момент 1):

 $S_e + S_v + I_e + I_v = 1$ (сумарен отнасян момент) 1 0 0 Проекцията на спина на двойката върху спина на ядрото има 3 възможни стойности : 0, +1, -1. Тези преходи са Гамов-Телеровски преходи - ΔI = 0, 1; ΔP не (тук не влизат преходите $0(I_i) \rightarrow 0(I_f)$, които са чисто Фермиевски). Преходите ΔI = 0, когато I_f или $I_i \neq 0$ са от смесен тип.

Фермиевските и Гамов-Телеровските преходи се наричат "**разрешени** β**преходи**" и за тях **орбиталния момент**, отнасян от двойката (**е**, **ν**) е нула.

IV. ФОРМА НА БЕТА-СПЕКТЪРА. ГРАФИК НА КЮРИ.

От теорията на разрешените β-спектри пълната вероятност за излъчване в единичен енергетичен интервал за енергиите на β-частицата и неутриното е:

$$\frac{dW(E)}{dE} = \frac{2}{\hbar} |M|^2 (E_0 - E_e - E) 4^2 \frac{dn_e}{dE}$$

където: $|\mathbf{M}|$ - ядрен матричен елемент на прехода (в първо приближение не зависи от енергията); δ - делта функция; \mathbf{E}_0 - максимална енергия на β -прехода; \mathbf{E}_e , \mathbf{E}_v - пълни енергии на е и v; $d\mathbf{n}_{ev}/d\mathbf{E}$ - плътност на състоянията на единица енергетичен интервал.

$$\frac{dW(E)}{dE_e} = \frac{|M|^2}{2^{-3}\hbar^7 e^4} E_e p_e E p_e$$

Показва се, че:

$$E_v = E_0 + m_e c^2 + m_v c^2 - E_e$$

При допускане, че $m_v c^2 = 0$, за енергетичния спектър N_E получаваме:

$$\begin{split} p &= \frac{1}{c} \sqrt{E^2 - (m \ c^2)^2} \\ N_E &\sim dW/dE = const \left| M \right|^2 E_e p_e [E_0 - E_e + m_e c^2]^2 \\ &= const \left| M \right|^2 E_e \sqrt{E_e^2} - (m_e c^2)^2 \left[E_0 - E_e + m_e c^2 \right]^2 \end{split}$$

В последната формула не е отчетено влиянието на кулоновото поле на ядрото върху излитащата частица.

Фиг.116. Влияние на кулоновото поле на ядрото върху непрекъснатия β-спектър.

На горната фигура е показано влиянието на кулоновото поле на ядрото върху β спектъра спрямо условно ядро без заряд ("Z = 0"). При β ⁻ разпада се повишава броя на нискоенергетичните електрони, при β ⁺- разпада се повишава броя на високоенергетичните (спектрите се отместват в различни посоки).

Чрез функцията на Ферми **F**(**Z**,**E**), която е известна в явен вид и е табулирана, се отчита влиянието на кулоновото поле на ядрото. **F**(**Z**,**E**) е различна за β⁻ и β⁺ разпада. Обръщаме внимание, че **Z** е атомния номер на **дъщерното ядро**.

При използуване на единицата m_ec² експерименталния спектър:

$$N_{\varepsilon} = \text{const} |M|^2 \varepsilon \sqrt{\varepsilon^2 - 1} (\varepsilon_0 - \varepsilon)^2 F(Z, E)$$

$$=\frac{E_{e}}{m_{e}c^{2}}; \quad _{0}=\frac{m_{e}c^{2}+T_{e}^{max}}{m_{e}c^{2}}$$

където **Т**е^{max} е граничната енергия на спектъра. Конструираме функцията:

$$K() = \sqrt{\frac{N}{\text{const}|M|^2}F(Z,E)} = 0^{-1}$$

където N_{ϵ} е експерименталния спектър.

Функцията **К(є)** (**График на Кюри**) е **строго линейна** по ε (за разрешените преходи) и пресича абцисата при ε_0 - граничната енергия на β -прехода т.е. **К(\varepsilon_0) = 0**

Фиг.117. График на Кюри.

Построяването на графика на Кюри е единствения начин за коректно намиране на граничната енергия (ϵ_0) на бета-спектъра от експерименталния спектър N_{ϵ} .

$$\Gamma_{\kappa \mu H}^{\text{гран}} = (\epsilon_0 - 1) m_e c^2$$

Когато бета-разпада е забранен, графика на Кюри не е права.

V. МАСА НА ПОКОЙ НА НЕУТРИНОТО

(Решаване на космологични проблеми чрез β-спектрометрия)

Независимо, че има много теоретични съображения, според които $m_v \equiv 0$ (например теорията на двукомпонентното неутрино), експериментите за измерване на масата на покой на неутриното продължават. Те се базират на факта, че поведението на графика на Кюри близо до граничната енергия е чувствително към m_v . Обикновено при тези измервания се използува източник от тритий 3_1 H ($T_{1/2}$ = 12,9 години).

$$^{3}_{1}H \rightarrow ^{3}_{2}He + ^{-}+ ~e$$

Фиг.118. Бета-разпад на ³Н.

Прехода $[(1/2)^+ \rightarrow (1/2)^+]; \Delta I = 0; \Delta P - не; I_i \neq 0; свърхразрешен; смесен Ф + ГТ; между "огледални" ядра$

Целта на описваните по-надолу експерименти е да се определи масата на покой на **v**_e. , ако тя въобще съществува.

Идеализирания вид на края на графика на Кюри за бета-разпада на ³H е показан по-долу за два случая: при $m_{ve} = 0$ и $m_{ve} = 50$ eV (с плътна линия), както и обикновения бета-спектър - с пунктир. При $m_v = 0$ графика на Кюри клони към граничната енергия $E_0 - m_v c^2$ перпендикулярно на абцисата.

За съжаление, експерименталния график на Кюри е конволюция на "идеалния" К(Е) и апаратурната линия, която като правило е със сложна форма и ширина, поголяма от "масочувствителния" интервал. Изследванията в този интервал изискват освен възможно най-висока разделителна способност, но и възможно най-нисък фон на прибора. Статистическите неопределености в края на спектъра стават също твърде големи.

Фиг.119. Поведение на края на непрекъснатия β-спектър при отсътвие и наличие на маса на покой на неутриното.

История на опитите за определяне на m_v :

1949 г. Ханна, Понтекорво - с пропорционален брояч (ΔE = 1,8 keV). Оценка $m_v < 1$ keV.

1969 г. - 1972 г. Беркуист – прибор: железен π√2 β-спектрометър; **ρ**₀ = 50 cm; Δ**р/р** = 0,11% (Δ**E** = 40 eV); входяща апертура 0,5%; фон 2,5 imp/s. Оценка m_v < 55 eV.

1980 г. - 1985 г. Любимов и Третяков – прибор: тороидален безжелезен β спектрометър с 4 фокуса. 4 кратно отклонение на 180^{0} ; $\Delta p/p = 0,12\%$ ($\Delta E = 43 \text{ eV}$); входяща апертура 0,4%; нисък фон - 0,03 - 0,1 imp/s. Оценка 14 eV < m_v < 46 eV (за 99% доверителен интервал!). За пръв път се привежда и долна граница за m_v . Този резултат все още не е потвърден от други автори. В експериментите освен всичко друго, се намесват и ефекти, дължащи се на химическите връзки на ³Н във веществото на източника, които изкивяват спектъра.

Фиг.120. Схема на β-спектрометъра на Любимов и Третяков.

Космологическо значение на експериментите

При еволюцията на звездите в много от ядрените процеси се отделят неутрино, които са практически ненаблюдаеми, но присъствуват във Вселената със своята маса.

Нашата Вселена се разширява и ако тя е "отворена", разширението ще продължава безкрай, ако е "затворена", след известно време разширението ще се прекрати и ще започне "свиване".

Въпросът за "отвореност" и "затвореност" на Вселената се решава от плътността на веществото в нея. Критичната плътност е

$$\rho_{\text{KPMT}}\approx 10^{\text{-29}}~\text{g/cm}^3$$

Плътността на "видимата материя" (галактики) е оценена на $10^{-30} \div 10^{-32}$ g/cm³ е с един порядък по-ниска от критичната (отворена Вселена). Ако **m**_v = 10 eV, то общата маса на **v** (скрита материя) ще е с един порядък по-голяма от видимата и е възможно **p** ~ 10^{-29} g/cm³.

VI. ПРИВЕДЕН ПЕРИОД НА ПОЛУРАЗПАД ft НА БЕТА-ПРЕХОДИТЕ. КЛАСИФИКАЦИЯ.

А. От вероятността за разпадане на единичен енергетичен интервал

$$\frac{dW()}{d} = const |M|^2 F(Z,) \sqrt{2-1} (_{0} -)^2$$

можем да получим **пълната вероятност** за разпадане в единица време (λ - константа на разпадане) чрез интегриране по енергията.

= const
$$|M|^2 \int_{1}^{0} F(Z,) \sqrt{2-1} (0)^2 d$$

Означаваме

$$f(_{0}) = \int_{1}^{0} F(Z,) \sqrt{2} - 1 (_{0} -)^{2} d$$
$$= \frac{1}{T_{1/2}} = \frac{\ln 2}{\Gamma_{1/2}} = \frac{C' |M|^{2} f(_{0}) ; T_{1/2}}{C' |M|^{2} f(_{0})}$$

Функцията **f**(ϵ_0) ~ ϵ_0^5 за достатъчно високи гранични енергии на β -спектъра. Очевидно е, че съществува **тривиална зависимост** (и то много силна) на **T**_{1/2} от граничната енергия на β -прехода (**T**_{1/2} ~ **1**/ ϵ_0^5), на фона на която влиянието на ядрения матричен елемент на прехода

не може да се забележи.

Конструира се величината:

$$ft = f(_{0})T_{1/2} = \frac{ln2}{C'IMI^{2}}$$

ft - **приведен период на полуразпадане**, който **не зависи от енергията** на βпрехода, а само от **структурата на ядрото** в начално и крайно състояние.

Качествено: Когато β-прехода се извършва **без голямо преустройство** на структурата на ядрото (има силно припокриване на вълновите функции на

началното и крайно състояние) $|\mathbf{M}|^2$ е близко до единица и ft е малко. При голяма промяна на структурата $|\mathbf{M}|^2 << 1$ и ft нараства силно. Вида на $|\mathbf{M}|^2$ зависи от възприетия вид взаимодействие.

Величината **lgft** (десетичен логаритъм от **ft**) е важна характеристика на бетапреходите, привежда се в схемите на разпад и зависи от степента на забранана прехода. Величината $T_{1/2}$ се определя експериментално, а **f(** ϵ_0) е табулирана.

	${\rm I_i}^{\pi i}$	${\rm I_f}^{\pi^{f}}$	ΔΙ	ΔP	T _{1/2}	E _{max} MeV	lgft	Тип
β^{-} n \rightarrow p	1/2+	1/2+	0	не	11,7 min	0,78	3,07	Φ+ΓΤ
β^{-} ${}^{3}_{1}H_{2} \rightarrow {}^{3}_{2}He_{1}$	1/2+	1/2+	0	не	12,4 a	0,018	3,1	Φ+ΓΤ
$\beta^{-6}_{2}He_{4} \rightarrow {}^{6}_{3}Li_{3}$	0+	1+	1	не	0,8 s	3,22	2,9	ΓT
β^+ ${}^{11}_6C_5 \rightarrow {}^{11}_5B_6$	3/2	3/2	0	не	20,4 min	0,99	3,59	Φ+ΓΤ
$\beta^{+}_{13}*AI_{13} \rightarrow {}^{26}_{12}Mg_{14}$	0+	0+	0	не	6,4 s	3,2	3,48	Φ

Една илюстрация: Параметри на някои "свръхразрешени" β-преходи:

Независимо от огромните разлики в **T_{1/2} и енергиите на бета-преходите се вижда**, че **lgft ≈ const** (3 - 3,5) за цялата група.

"Свръхразрешени" преходи се наблюдават при леките ядра с A ≤ 40. Те се извършват без изменение на структурата на ядрото, при това особено олбекчени са преходите, когато протона и неутрона, участвуващи в β-взаимодействието (в начално и крайно състояние) са в едно и също квантово състояние (слоист модел на ядрото – "пртонната" и "неутронната" ями се запълват поотделно). Очевидно това е възможно, когато Z ≈ N (начало на периодичната система).

За **"нормално" разрешените** преходи **Igft** ≈ **5**. Те се наблюдават при тежките ядра, когато N > Z и протона и неутрона, участвуващи в β-разпада не могат да се намират в едно и също квантовомеханично състояние, тъй като "потенциалните ями" за протоните и неутроните са различно запълнени.

Б. Някои практически правила

За пресмятане на **lgft** се използува функцията **f**(**ε**₀,**Z**), която е табулирана (Джелепов и Зырянова) и периода на полуразпадане **T**_{1/2} в секунди.

В много случаи имаме β-преходи до възбудени ядрени състояния с различни енергии (гранични) и интензитети (парциални β-спектри). В тези случаи при пресмятане на **lgft** се използуват **граничната енергия** на съответния β-преход и неговия **парциален период на полуразпадане** T_{1/2}ⁿ, като:

$$T_{1/2}^{n} = T_{1/2} \frac{I}{I^{n}}; T_{1/2}^{n} = T_{1/2} \frac{100}{I^{n}\%}; (T_{1/2}^{n} > T_{1/2})$$

където: **T**_{1/2} - пълен период на полуразпадане на стартовия нуклид; **I**_β - пълен интензитет на бета-прехода; **I**_βⁿ - интензитет на съответния бета-преход, ако **I**_βⁿ е в % на 100 разпада.

Един пример:

Фиг.121. Бета-преходи при разпада на ²⁴Na.

	E _{rp} [MeV]	I _n [%]	T _{1/2} n [s]	ΔI	ΔΡ	lgft	Тип
βo	5,55	10 ⁻¹¹	5,4.10 ¹⁷	4	не	(20)	(забранен – 4 порядък)
β1	4,2	10 ⁻³	5,4.10 ⁹	2	не	12,7	(забранен 2 порядък – неуникален)
β2	1,4	100	5,4.10 ⁴	0	не	6,1	(Ф+ГТ нормален – разрешен)

В. Класификация на β-преходите. Степен на забрана.

Освен разрешените (и свръхразрешените) Фермиевски и Гамов-Телеровски и смесени β -преходи с вече коментираните правила за отбор $\Delta I = 0$; $\Delta I = 0, 1$; $\Delta P -$ не, съществуват β -преходи с по-голяма промяна на спина и изменение на четността, наречени (условно) "забранени". При забранените преходи двойката (е, ν) освен собствения си спинов момент S_e + S_v, отнася и определен орбитален момент : I = I_e + I_v (цял), който определя степента (порядъка) на забрана.

За разрешените преходи $| = 0 (\Phi, \Gamma T)$

За еднократно забранените преходи | = 1

За **двукратно забранените преходи** | = 2 и т.н.

Поради много малкия "радиус на действие" на бета-взаимодействието (много помалък от размерите на ядрото), вероятността за преходи с изнасяне на I ≠ 0 е малка и намалява с нарастване на I.

С нарастване на степента на забрана **нараства** и **lgft**, при което преходите се групират по следния начин:

	разр	ешени	забранени		
	свръх нормални		1	2	3
			порядък	порядък	порядък
lgft средно за групата	3,5	5	9	15	18

От горната таблица се вижда бърэото нарастване на **lgft** с нарастване на порядъка на забрана (приведения период **ft** нараства средно с по 10⁴).

забрана	∆P =(-1) ⁿ	∆I = n, n+1	Тип	Нуклид (lgft)
разрешени	не	$\Delta \mathbf{I} = 0$ $(0 \rightarrow 0)$	Ферми	
n = 0		ΔI = 0, 1 (без 0 → 0)	ГТ чисти и Смесени	²⁴ Na (6,1); ²² Na (7,4); ⁶⁰ Co (7,5)
забранени	пр	∆I = 0, 1	неуникални	
1 порядък n = 1	да	Δ I = 2	уникални	¹³⁷ Cs (9,6); ⁹⁰ Sr (9,4); ⁹⁰ Y (9,2)
забранени	не	Δ I = 2	неуникални	²⁴ Na (12,7) (слаб) ¹³⁷ Cs (12,1) (слаб)
2 порядък n = 2		<u>Δ</u> I = 3	уникални	
забранени	ла	ΔI = 3	неуникални	
3 порядък n = 3	да	$\Delta I = 4$	уникални	⁴⁰ Κ (18,1)

Обща класификация на бета-преходите:

Г. Правила за отбор по изотопически спин

Въвежда се величината за нуклоните **T** = 1/2

T_Z = 1/2 - протон; T_Z = - 1/2 - неутрон

Т= _і t_і ≥
$$\left|\frac{2Z - A}{2}\right|$$
 - за ядро

$$T = T_z$$
; $T_z = \frac{2Z - A}{2}$ - за ядро в основно състояние

За Фермиевските преходи (0 \rightarrow 0) ΔT = 0; ΔT_Z = 1

За Гамов-Телеровските и забранените преходи $\Delta T = 0, \pm 1; \Delta T_Z = \pm 1$

Въвеждането на правила за отбор по изоспин се е наложило поради откриване на бета-преходи от Фермиевски тип $0^+ \rightarrow 0^+$, които вместо обичайното **lgft = 3**, имат **lgft ≈ 9**.

Пример: ${}^{170}_{71}Lu \rightarrow {}^{170}_{70}Yb$; $0^+ \rightarrow 0^+$ но $\Delta T = 1$ - забранен по изоспин и поради това силно забавен.

При анализа на бета-преходите по **lgft** трябва да се имат предвид и тези правила за отбор, както и някои допълнителни забрани за деформираните ядра.

Трябва да се отбележи, че за **забранените "уникални"** преходи графикът на Кюри се **отличава от права линия**. Често по формата му (поправъчни коефициенти) може да се съди за порядъка на забраната.

Практически извод:

Изследването на формата на графика на Кюри, както и определянето на типа на бета-прехода (lgft) носи ценна информация за структурата на ядрото в начално и крайно състояние.

Експерименталните β-спектри (по енергия или импулс), а от там и графика на Кюри, **винаги са конволюция** от истинското разпределение и формата на апаратурната линия ("отклика" на спектрометъра на моноенергетични електрони).

Детайли във формата на β-спектъра и неговото поведение близо до граничната енергия могат да се получат само при **добра разделителна способност** на прибора - малка полуширина на апаратурната линия. Подобряването на разделителната способност на β-спектрометрите не е самоцелно.

VII. КОНСТАНТА НА СЛАБОТО ВЗАИМОДЕЙСТВИЕ

Вече беше показано, че:

$$ft = \frac{ln2}{C'|M|^2}$$

Константата С' съдържа в себе си константата на слабото взаимодействие G:

$$C' = \frac{G^2 m_e^5 c^4}{2^{-3} h^7} [s^{-1}]$$

За някои особено прости случаи на бета-преходи, за които е известен ядрения матричен елемент $|\mathbf{M}|^2$, **С'** може да се сметне точно и от там да се намери константата **G**.

Пример: ¹⁴O \rightarrow ¹⁴N ; $|\mathbf{M}|^2 = 2$; чист 0⁺ \rightarrow 0⁺ Фермиевски преход Измерено Inft = 3,4; ft = 2500 s; C' = In2/ft $|\mathbf{M}|^2$ = 1,4.10⁻⁴ s⁻¹

$$G_{v} = \sqrt{\frac{C'2^{-3}\hbar^{7}(m_{e}c^{2})^{2}}{(m_{e}c)^{7}c}} = \sqrt{\frac{C'2^{-3}-c^{7}}{c}(m_{e}c^{2})^{2}}$$

където

$$r_{e} = \frac{h}{m_{e}c} = 3,8.10^{-11} \text{ cm}$$

- комптонова дължина на електрона.

Тогава: **G_V** = 1,4.10⁻⁴⁹ ерг.cm³ = 8,8.10⁻³⁸ eV.cm³. - **глобална константа на Ферми**, характеризираща слабото взаимодействие и в ядрените бета-преходи, и в разпадите на лептоните (**μ**, **τ**).

Близка по стойност константа се получава и за Гамов-Телеровските бета-преходи.

Безразмерната константа на слабото взаимодействие:

$$g = \frac{G_v}{\sqrt{2}} \frac{1}{m_e c^2} \left(\frac{h}{m_e c}\right)^3 = 2,2.10^{-12}$$

характеризира слабото взаимодействие в сравнение с другите известни в природата.

Безразмерната константа на гравитационното взаимодействи:

$$\frac{G_{N}m_{p}^{2}}{m_{p}c^{2}}\left(\frac{h}{m_{p}c}\right)^{-1} = 5.8.10^{-39}$$

 $G_N = 6,7.10^{-8} [cm^3/g.s^2]$ - Нютонова гравитационна константа

$$\frac{G_{\rm N}m_p^2}{m_pc^2} = 1.2.10^{-52} \, \rm cm$$

- гравитационен радиус на нуклона

$$r_{p} = \frac{\hbar}{m_{p}c} = 2,1.10^{-14} \,\mathrm{cm}$$

- комптонова дължина на вълната на нуклона

Безразмерната константа на електромагнитното взаимодействие:

$$=\frac{e^2}{m_ec^2}\left(\frac{\hbar}{m_ec}\right)^{-1}=7,4.10^{-3}=\frac{1}{137}$$

$$r_e = \frac{e^2}{m_e c^2} = 2,8.10^{-13} \text{ cm}$$

- класически електромагнитен радиус на електрона

$$r_{e} = \frac{h}{m_{e}c} = 3.8.10^{-11} \text{ cm}$$

- комптонова дължина на вълната на електрона

Безразмерната константа на силното (ядрено) взаимодействие:

$$f = \frac{g_N^2}{hc} \approx 15$$

 $g_N^2 = 4,7.10^{-16} \text{ epr.cm} = 2,9.10^{-4} \text{ eV.cm}$

 $hc = 3,15.10^{-17} epr.cm = 1,97.10^{-5} eV.cm$

Радиус на действие на взаимодействията: - Определя се от масата на покой на бозона - преносител на съответното взаимодействие, чрез неговата комптонова дължина на вълната (величина, която има значително по-дълбок физичиски смисъл отколкото се е предполагало първоначално):

Гравитационно - гравитони (безмасови) - безкраен радиус на действие

Електромагнитно – електромегнитни кванти (безмасови) - безкраен радиус на действие

Силно - *п*-мезони; **m**_π**c**² = 140 MeV

$$R_N \approx \frac{h}{m c} = - = 1,4.10^{-13} cm$$

Слабо - W^{\pm} векторни бозони; $m_w c^2$ = 80 GeV

$$R_{w} = \frac{h}{m_{w}c} = -_{w} = 2.5.10^{-16} \text{ cm}$$

Слабото взаимодействие е значително по-късодействуващо от ядреното, (около 10³ пъти), така че теорията за "точково" 4-фермионно взаимодействие на Е.Ферми е оправдана post factum.

Теория на **Вайнберг - Салам** (1967 г.) за "електро-слабото" взаимодействие: Въвеждат 4 калибровъчни бозони - 2 заредени **W**[±] (слаби заредени токове) и 2 неутрални **W**⁰ и **B**⁰. От тях може да се построи единна теория на слабите и електромагнитни взаимодействия с 4 бозона - γ , **Z**⁰, **W**⁺, **W**⁻ (последните три носители на слабото взаимодействие) - Вайнберг, Глешоу, Салам - Нобелова награда за 1979 г. Това е първото **обединение** на взаимодействията, очакват се "великото обединение" (+ ядрено) и ..."теория на всичко" (+ гравитация).

1983 г. - W^{\pm} и Z^{0} - открити в ЦЕРН при взаимодействие на насрещни протонантипротонни снопове 270 GeV всеки; $m_{w\pm}c^{2}$ = 81 GeV; m_{zo} = 94 GeV – К.Рубиа и Ван дер Меер - Нобелова награда за 1984 г. Все още сме далеч от експериментите необходими за следващите обединения !