Физика на елементарните частици

Lecture 1 L. Litov University of Sofia

May 2010, Sofia

CERN		Collis	ions at	7 TeV		
🖌 см	S Experiment at t	he LHC, CERN			Teuto Trappers 0	4.9
Data Run: Even Lumi Orbit Cross	recorded: 2010 1324 t: 3087 section: 138 3598 sing: 1	-Mar-30 11:04:14.11104	00 GMT(13:04:14	CEST)		LL_Directions LL_Dir
HLTTNJP HLTJAN HLTJAN HLTJAN HLTJAN HLJAN HLJAN	nt Na Jacob Zalakina Na Jacob Zalakina Na Jacob Zalakina Na Zalaki					
41,244 14,7,440 14,7,440 14,7,440 14,7,440 14,7,440 14,7,540 14,740	laapant laapatnin laabant laapatnin laabant laapatnin laabant laapatnin laabant laapatnin laabant laapatnin laabant laabant laabant laabant hadyn Pach hullun laapatnin pil	Timoreg right soutes	1.000001114 E.2280 E.460 E.47500 E.47500 E.47500 E.47500 E.47500 E.47500 E.47500 E.475	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000		

Опитва се да отоговори на на два фундаментални въпроса

-Кои са елементарните съставящи на материята?

-Кои са фундаменталните сили контролиращи тяхното поведение ?

Структура на материята

L. Litov

Sofia, April 2009

1 electron-Volt (eV):

the energy of a particle with electric charge = |e|, initially at rest, after acceleration by a difference of electrostatic potential = 1 Volt $(e = 1.60 \times 10^{-19} \text{ C})$

 $1 eV = 1.60 \times 10^{-19} J$

Multiples: $1 \text{ keV} = 10^3 \text{ eV}$; $1 \text{ MeV} = 10^6 \text{ eV}$ $1 \text{ GeV} = 10^9 \text{ eV}$; $1 \text{ TeV} = 10^{12} \text{ eV}$

Energy of a proton in the LHC :

7 TeV = $1.12 \times 10^{-6} J$

(the same energy of a body of mass = 1 mg moving at speed = 1.5 m/s)

These are related quantities In particle physics the unit of energy is the electron volt. 1 electron volt (eV) = Energy gained by an electron in passing through a voltage difference of 1 V

E=mc ²	c=3.10 ⁸ m/s	speed of light
E=kT	k=104 eV K ⁻¹	Boltzmann's constant
E=hc/λ	h=4.10-15 eV s	Planck's constant

Mass of electron0.5 million eV (MeV)Mass of proton1 Giga eV (GeV)

1 eV ~ 10,000 K 1 GeV ~ 1 femtometre (fm) = 10⁻¹⁵m

General Relativity depends on c and G (Newton's constant), QM depends on \hbar . Natural unit of length is given by is called Planck length ~ 10⁻³⁵ m

$$\sqrt{\hbar G/c^3}$$

1894 – 1897: Откритие на електрона

Study of "cathode rays": electric current in tubes at very low gas pressure ("glow discharge")

Measurement of the electron mass: $m_e \gg M_H/1836$ "Could anything at first sight seem more impractical than a body which is so small that its mass is an insignificant fraction of the mass of an atom of hydrogen?" (J.J. Thomson)

J.J. Thomson

ATOMS ARE NOT ELEMENTARY

Thomson's atomic model:

- § Electrically charged sphere
- **§** Radius ~ 10^{-8} cm
- § Positive electric charge
- § Electrons with negative electric charge embedded in the sphere

<u>a - particles</u>: nuclei of Helium atoms spontaneously emitted by heavy radioactive isotopes Typical a – particle velocity > 0.05 c (c: speed of light)

significant scattering of α – particles at large angles, consistent with scattering expected for a sphere of radius \approx few X 10⁻¹³ cm and electric charge = Ze, with Z = 79 (atomic number of gold) and e = [charge of the electron]

an atom consists of
 a positively charged nucleus
 surrounded by a cloud of electrons

Nuclear radius » 10^{-13} cm » 10^{-5} x atomic radius Mass of the nucleus » mass of the atom (to a fraction of 1‰)

Откритие на неутрона

Neutron: a particle with mass » proton mass but with zero electric charge (Chadwick, 1932) Solution to the nuclear structure problem: Nucleus with atomic number Z and mass number A: a bound system of Z protons and (A – Z) neutrons

Nitrogen anomaly: no problem if neutron spin = $\frac{1}{2}\hbar$

Nitrogen nucleus (A = 14, Z = 7): 7 protons, 7 neutrons = 14 spin $\frac{1}{2}$ particles James Chadwick \triangleright total spin has integer value

<u>Neutron source in Chadwick's experiments</u>: a ²¹⁰Po radioactive source (5 MeV a – particles) mixed with Beryllium powder \triangleright emission of electrically neutral radiation capable of traversing several centimetres of Pb: ${}^{4}\text{He}_{2} + {}^{9}\text{Be}_{4} \otimes {}^{12}\text{C}_{6} + \text{neutron}$

 α - particle

<u>Принцип на Паули</u>

In Quantum Mechanics the electron orbits around the nucleus are "quantized": only some specific orbits (characterized by integer quantum numbers) are possible.

$$R_{n} = \frac{4\pi\epsilon_{0}\mathbf{h}^{2}n^{2}}{me^{2}} \approx 0.53 \times 10^{-10} n^{2} \text{ [m]}$$

$$E_{n} = -\frac{me^{4}}{2(4\pi\epsilon_{0})^{2}\mathbf{h}^{2}n^{2}} \approx -\frac{13.6}{n^{2}} \text{ [eV]}$$

$$m = m_{e}m_{p}/(m_{e} + m_{p})$$

In atoms with *Z* > 2 only two electrons are found in the innermost orbit – WHY?

Lithium (Z = 3)

<u>ANSWER</u> (Pauli, 1925): two electrons (spin = $\frac{1}{2}$) can never be in the same physical state

Hydrogen (Z = 1) Helium (Z = 2)

ERM

Lowest

energy state

Wolfgang Pauli

Pauli's exclusion principle applies to <u>all</u> particles with half-integer spin(collectively named Fermions)L. LitovФизика на елементарните частициSofia, April 2009

<u>Антиматерия</u>

Discovered "theoretically" by P.A.M. Dirac (1928) <u>Dirac's equation</u>: a relativistic wave equation for the electron

Two surprising results:

ERN

§ Motion of an electron in an electromagnetic field: presence of a term describing (for slow electrons) the potential energy of a magnetic dipole moment in a magnetic field p existence of an intrinsic electron magnetic dipole moment opposite to spin

electron spin
electron
magnetic dipole
moment m_e

$$\mu_e = \frac{e\mathbf{h}}{2m_e} \approx 5.79 \times 10^{-5} \,[\text{eV/T}]$$

§ For each solution of Dirac's equation with electron energy E > 0there is another solution with E < 0

What is the physical meaning of these "negative energy" solutions ? L. Litov Физика на елементарните частици

P.A.M. Dirac

Sofia, April 2009

Експериментално наблюдение на антиматерия

(C.D. Anderson, 1932)

Measure particle momentum and sign of electric charge from magnetic curvature

Detector: a Wilson cloud – chamber (visual detector based on a gas volume containing vapour close to saturation) in a magnetic field, **projection of the particle trajectory in a plane**

exposed to cosmic rays

Lorentz force

ERM

$$\mathbf{r} = e\mathbf{v} \times B$$

Circle radius for electric charge |e|:

- p_{\perp} : momentum component perpendicular to magnetic field direction
- **<u>NOTE</u>**: impossible to distinguish between positively and negatively charged particles going in opposite directions
 - \Rightarrow need an independent determination of the particle direction of motion

$$-e$$

perpendicular to B is a circle

 $R[m] = \frac{10 p_{\perp} [\text{GeV/c}]}{3B[\text{T}]}$

Carl D. Anderson

Cosmic-ray "shower" containing several of carpairs

December 1930: public letter sent by W. Pauli to a physics meeting in Tübingen

Zürich, Dec. 4, 1930

Dear Radioactive Ladies and Gentlemen,

personally, since I am indispensable here in Zürich because of a ball on the night of 6/7 December.

W. Pauli

Теория на β-разпада (V-А модел)

b⁻ **decay: n (B p** + **e**⁻ + **n b**⁺ **decay: p (B n** + **e**⁺ + **n** (e.g., ¹⁴O₈ \rightarrow ¹⁴N₇ + e⁺ + ν) **n: the particle proposed by Pauli** (named "neutrino" by Fermi) **n: its antiparticle (antineutrino)**

Enrico Fermi

(E. Fermi, 1932-33)

Fermi's theory: a point interaction among four spin ½ particles, using the mathematical formalism of creation and annihilation operators invented by Jordan

P particles emitted in b – decay need not exist before emission – they are "created" at the instant of decay

Prediction of b – decay rates and electron energy spectra as a function of only one parameter: Fermi coupling constant G_F (determined from experiments)

Energy spectrum dependence on neutrino mass m (from Fermi's original article, published in German on Zeitschrift für Physik, following rejection of the English version by Nature)

Measurable distortions for m > 0 near the end-point (E_0 : max. allowed electron energy)

1947: Откритие на π-мезон

Observation of the $p^+ \ensuremath{\,\mathbb R}$ $m^+ \ensuremath{\,\mathbb R}$ e^+ decay chain in 1 exposed to cosmic rays at high altitudes

In all events the muon has a fixed kinetic energy (4.1 MeV, corresponding to a range of ~ 600 mm in nuclear emulsion) Þ two-body decay

 $m_{\rm p} = 139.57 \ {\rm MeV}/c^2$; spin = 0 Dominant decay mode: p⁺ ® m⁺ + n (and p⁻ ® m⁻ + n) Mean life at rest: t_p = 2.6 × 10⁻⁸ s = 26 ns

A neutral p – meson (p°) also exists: m (p°) = 134. 98 MeV $/c^2$ Decay: p° \circledast g + g , mean life = 8.4 x 10⁻¹⁷ s

p – mesons are the most copiously produced particles in proton – proton and proton – nucleus collisions at high energies

Запазващи се квантови числа

Possible proton decay modes (allowed by all known conservation laws: energy – momentum, electric charge, angular momentum):

 $\begin{array}{c} p & \mathbb{R} & p^\circ + e^+ \\ p & \mathbb{R} & p^\circ + m^+ \\ p & \mathbb{R} & p^+ + n \end{array} \end{array} \hspace{1cm} Why is the free proton stable?$

No proton decay ever observed – the proton is STABLE Limit on the proton mean life: $t_p > 1.6 \times 10^{32}$ years

Invent a new quantum number : "Baryonic Number" B

- B = 1 for proton, neutron
- **B** = -1 for antiproton, antineutron
- **B** = 0 for e^{\pm} , m^{\pm} , neutrinos, mesons, photons

Require conservation of baryonic number in all particle processes:

$$\sum_i \mathbf{B}_i = \sum_f \mathbf{B}_f$$

(*i*: initial state particle; f: final state particle)

ERN

Странност

Late 1940's: discovery of a variety of heavier mesons (K – mesons) and baryons ("hyperons") – studied in detail in the 1950's at the new high-energy proton synchrotrons (the 3 GeV "cosmotron" at the Brookhaven National Lab and the 6 GeV Bevatron at Berkeley)

Mass values

Mesons (spin = 0): $m(K^{\pm}) = 493.68 \text{ MeV}/c^2$; $m(K^{\circ}) = 497.67 \text{ MeV}/c^2$ Hyperons (spin = ½): $m(L) = 1115.7 \text{ MeV}/c^2$; $m(S^{\pm}) = 1189.4 \text{ MeV}/c^2$ $m(X^{\circ}) = 1314.8 \text{ MeV}/c^2$; $m(X^{-}) = 1321.3 \text{ MeV}/c^2$

Properties

§ Abundant production in proton – nucleus , p – nucleus collisions § Production cross-section typical of strong interactions (s > 10^{-27} cm²) § Production in pairs (example: p⁻ + p \otimes K^o + L ; K⁻ + p \otimes X⁻ + K⁺) § Decaying to lighter particles with mean life values $10^{-8} - 10^{-10}$ s (as expected for a weak decay)

Examples of decay modes

Странност

(Gell-Mann, Nakano, Nishijima, 1953) **§** conserved in strong interaction pr

§ not conserved in weak decays:

Pocesses:
$$\left| \mathbf{S}_{i} - \sum_{f} \mathbf{S}_{f} \right| = 1$$

S = +1: K^+ , K° ; S = -1: L, S^\pm , S° ; S = -2: X° , X^- ; S = 0: all other particles (and opposite strangeness –S for the corresponding antiparticles)

Example of a K⁻ stopping in liquid hydrogen: $\mathbf{K}^{-} + \mathbf{p} \quad \mathbb{R} \quad \mathbf{L} + \mathbf{p}^{\circ}$ (strangeness conserving) followed by the decay $L \otimes p + p^{-}$ (strangeness violation)

 $\sum \mathbf{S}_i = \sum \mathbf{S}_f$

L. Litov

ERN

L. Litov

Физика на елементарните частици

Sofia, April 2009

<u>Лептонно число</u>

ERN

A puzzle of the late 1950's: the absence of m R e g decays Experimental limit: < 1 in 10⁶ m⁺ R e⁺ n n decays A possible solution: existence of a new, conserved "muonic" quantum number distinguishing muons from electrons

To allow $m^+ \otimes e^+ n \overline{n}$ decays, \overline{n} must have "muonic" quantum number but not $n \triangleright in m^+$ decay the \overline{n} is not the antiparticle of n

Þ two distinct neutrinos (n_e, n_m) in the decay $m^+ \otimes e^+ n_e \overline{n_m}$ Consequence for p – meson decays: $p^+ \otimes m^+ n_m$; $p^- \otimes m^- \overline{n_m}$ to conserve the "muonic" quantum number

High energy proton accelerators: intense sources of p^{\pm} – **mesons** $P = n_m, \overline{n_m}$

If $n_m^{-1} n_e$, n_m interactions produce m⁻ and not e⁻ (example: $n_m + n \otimes m^- + p$)

Кварков модел

FRN

Late 1950's – early 1960's: discovery of many strongly interacting particles at the high energy proton accelerators (Berkeley Bevatron, BNL AGS, CERN PS), all with very short mean life times $(10^{-20} - 10^{-23} \text{ s, typical of strong decays})$ \triangleright catalog of > 100 strongly interacting particles (collectively named "hadrons")

ARE HADRONS ELEMENTARY PARTICLES?

1964 (Gell-Mann, Zweig): Hadron classification into "families"; observation that all hadrons could be built from three spin ¹/₂ "building blocks" (named "quarks" by Gell-Mann):

	U	d	S
Electric charge (units e)	+2/3	- 1/3	- 1/3
Baryonic number	1/3	1/3	1/3
Strangeness	0	0	- 1

and three antiquarks $(\overline{u}, \overline{d}, \overline{s})$ with opposite electric charge and opposite baryoftic mumber and strangeness Sofia, April 2009

Кварков модел

Mesons: quark – antiquark pairs **Examples of non-strange mesons:**

$$p^{+} \equiv u\overline{d} \; ; \; p^{-} \equiv \overline{u}d \; ; \; p^{0} \equiv (d\overline{d} - u\overline{u})/\sqrt{2}$$

Examples of strange mesons:

 $K^{-} \equiv s\overline{u}$; $\overline{K}^{0} \equiv s\overline{d}$; $K^{+} \equiv \overline{s}u$; $K^{0} \equiv \overline{s}d$

Baryons: three quarks bound together Antibaryons: three antiquarks bound together Examples of non-strange baryons:

proton $\equiv uud$; neutron $\equiv udd$

Examples of strangeness –1 baryons:

$$\Sigma^+ \equiv suu \quad ; \quad \Sigma^0 \equiv sud \quad ; \quad \Sigma^- \equiv sdd$$

Examples of strangeness –2 baryons:

$$\Xi^0 \equiv ssu$$
; $\Xi^- \equiv ssd$

Физика на елементарните частици

Sofia, April 2009

CERN	A suc	cess of	f the sta	tic qua	ark mo	del	
The "decuplet" of spin $\frac{3}{2}$ baryons							
Strangeness	~				Ν	$\text{Mass} (\text{MeV}/c^2)$	_
0	N* ⁺⁺ uuu	N*+ uud	N** udd)	N*- ddd	1232	
-1	S*+ suu		S*° sud	S*- sdd		1384	
-2		X*° ssu	X* ssd			1533	
-3			W sss			1672 (predicted	l)
		0.7					

W⁻: the bound state of three *s* – quarks with the lowest mass with total angular momentum = 3/2 Þ Pauli's exclusion principle requires that the three quarks cannot be identical Физика на елементарните частици Sofia, April 2009

A success of the static quark model

<u>The first W⁻ event</u> (observed in the 2 m liquid hydrogen bubble chamber at BNL using a 5 GeV/c K⁻ beam from the 30 GeV AGS)

Chain of events in the picture:

K⁻ + **p ® W**⁻ + **K**⁺ + **K**^o (strangeness conserving)

 $W^{-} \otimes X^{\circ} + p^{-}$ (DS = 1 weak decay)

ERN

 $L @ p^- + p$ (DS = 1 weak decay)

 $p^{\circ} \otimes g + g$ (electromagnetic decay)

with both g – rays converting to an e^+e^- in liquid hydrogen (very lucky event, because the mean free path for g $\otimes e^+e^-$ in liquid hydrogen is ~10 m)

W⁻ mass measured from this event = $1686 \pm 12 \text{ MeV}/c^2$

Физика на елементарните частици

Дълбоко нееластично разсейване

Electron – proton scattering using a 20 GeV electron beam from the Stanford two – mile Linear Accelerator (1968 – 69).

The modern version of Rutherford's original experiment:

resolving power » wavelength associated with 20 GeV electron $> 10^{-15}$ cm

Three magnetic spectrometers to detect the scattered electron:

- § 20 GeV spectrometer (to study elastic scattering e⁻ + p ® e⁻ + p)
- **§** 8 GeV spectrometer (to study inelastic scattering e⁻ + p ® e⁻ + hadrons)
- **§** 1.6 GeV spectrometer (to study extremely inelastic collisions)

ERN

Физика на елементарните частици

Sofia, April 2009

DE DE CILIO

Дълбоко нееластично разсейване

Electron elastic scattering from a point-like charge |e| at high energies: differential cross-section in the collision centre-of-mass (Mott's formula)

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 (\mathbf{h}c)^2}{8E^2} \frac{\cos^2(\theta/2)}{\sin^4(\theta/2)} \equiv \sigma_M \qquad \left(\alpha = \frac{e^2}{\mathbf{h}c} \approx \frac{1}{137}\right)$$

Scattering from an extended charge distribution: multiply s_M by a "form factor":

ERN

$$\frac{d\sigma}{d\Omega} = F(|\mathbf{Q}^2|)\sigma_M$$

 $|\mathbf{Q}| = \hbar / \mathbf{D}$: mass of the exchanged virtual photon D: linear size of target region contributing to scattering Increasing $|\mathbf{Q}| \rightarrow$ decreasing target electric charge

F (|Q²|) = 1 for a point-like particle
Þ the proton is not a point-like particle

Дълбоко нееластично разсейване

For deeply inelastic collisions, the cross-section depends only weakly on $|Q^2|$, suggesting a collision with a <u>POINT-LIKE</u> object

ERN

Партонен модел

Deep inelastic electron – proton collisions are elastic collisions with point-like, electrically charged, spin $\frac{1}{2}$ constituents of the proton carrying a fraction x of the incident proton momentum

Each constituent type is described by its electric charge e_i (units of |e|) and by its x distribution (dN_i/dx) ("structure function")

If these constituents are the u and d quarks, then deep inelastic e – p collisions provide information on a particular combination of structure functions:

$$\left(\frac{dN}{dx}\right)_{\rm e-p} = e_{u}^{2} \frac{dN_{u}}{dx} + e_{d}^{2} \frac{dN_{d}}{dx}$$

Comparison with $n_m - p$ and $\overline{n_m} - p$ deep inelastic collisions at high energies under the assumption that these collisions are also elastic scatterings on quarks $n_m + p \otimes m^- + hadrons : n_m + d \otimes m^- + u$ (depends on dN_d / dx) $\overline{n_m} + p \otimes m^+ + hadrons : n_m + u \otimes m^+ + d$ (depends on dN_u / dx)

(Neutrino interactions do not depend on electric charge)

CERN

All experimental results on deep inelastic e - p, $n_m - p$, $n_m - p$, $n_m - p$ collisions are consistent with $e_u^2 = 4 / 9$ and $e_d^2 = 1 / 9$ the proton constituents are quarks

Цвят

It has symmetric wave function, but it is a fermion Contradiction with Pauli exclusion principle – the wave function should be antisymmetric The way out - new quantum number – colour $N_c = 3$ q^{α} , $\alpha = 1,2,3$ Then $\Delta^{++} = \frac{1}{\sqrt{6}} e^{abg} u_a \uparrow u_b \uparrow u_g \uparrow$

n general case 1

$$B = \frac{1}{\sqrt{6}} e^{abg} |q_a q_b q_g > \qquad M = \frac{1}{\sqrt{3}} d^{ab} |q_a \overline{q}_b >$$

Sofia, April 2009

ERN

Two beams circulating in opposite directions in the same magnetic ring and colliding head-on e^+ e^-

 $E, \vec{p} \qquad E, -p \qquad E, -p \qquad E, -p \qquad A \text{ two-step process: } e^+ + e^- \otimes \text{ virtual photon } \otimes f + \vec{f}$ f : any electrically charged elementary spin 1/2 particle (m, quark) $(excluding e^+e^- \text{ elastic scattering})$ Virtual photon energy – momentum : $E_g = 2E$, $p_g = 0 \Rightarrow Q^2 = E_g^2 - p_g^2 c^2 = 4E^2$ $Cross - section \text{ for } e^+e^- \otimes ff : a = e^2/(\hbar c) \gg 1/137$ $e_f : \text{ electric charge of particle f (units |e|)}$

 $\vec{\mathbf{b}} = \mathbf{v}/c$ of outgoing particle f

(formula precisely verified for $e^+e^- \otimes m^+m^-$)

Assumption: $e^+e^- \otimes quark(q) + antiquark(\overline{q}) \otimes hadrons$ $\bowtie at energies E >> m_q c^2$ (for q = u, d, s) b > 1:

$$R \equiv \frac{\mathbf{s} (e^+e^- \to \text{hadrons})}{\mathbf{s} (e^+e^- \to \mathbf{m}^+\mathbf{m}^-)} = e_u^2 + e_d^2 + e_s^2 = \frac{4}{9} + \frac{1}{9} + \frac{1}{9} = \frac{2}{3}$$
, April 2009

§ For Q < 3.6 GeV $R \gg 2$. If each quark exists in three different states, $R \gg 2$ is consistent with $3 \times (2/3)$. This would solve the W⁻ problem.

- **§** Between 3 and 4.5 GeV, the peaks and structures are due to the production of quark-antiquark bound states and resonances of a fourth quark ("charm", c) of electric charge +2/3
- § Above 4.6 GeV $R \gg 4.3$. Expect $R \gg 2$ (from u, d, s) + 3 × (4 / 9) = 3.3 from the addition of the *c* quark alone. So the data suggest pair production of an additional elementary spin $\frac{1}{2}$ particle with electric charge = 1 (later identified as the t lepton (no strong interaction) with mass $\gg 1777$ MeV/ c^2).

Фундаментални частици

The particle drawings are simple artistic representations

CERN