Упражнение № 3. ИЗСЛЕДВАНЕ НА БЕТА-СПЕКТЪРА НА ¹³⁷Сs ПОСРЕДСТВОМ СЦИНТИЛАЦИОНЕН СПЕКТРОМЕТЪР СЪС СТИЛБЕНОВ КРИСТАЛ.

1. Поставяне на експерименталните задачи

- Да се снемат спектрите на електроните на източници ²⁰⁷Bi и ¹³⁷Cs. βспектъра на ¹³⁷Cs да се коригира за приноса на γ-лъчението.
- Да се извърши калибровка по енергии по известните конверсионни линии на ²⁰⁷Ві.
- Да се построи графикът на Ферми-Кюри и определи максималната енергия на β-спектъра на ¹³⁷Cs.

2. Апаратура

- Сцинтилационен детектор тип VA-S-968.1 (GDR) със сцинтилатор стилбен с размери Ø30 x 20 mm (отворен) и с предусилвател. Изходящият сигнал е с отрицателна полярност.
- Рb-защита (домик) тип 75002 (GDR) с прободържател.
- Едноканален амплитуден анализатор тип 20160 (GDR) (използват се блоковете: Усилвател тип 20111 и Високо напрежение тип 20105),
- Многоканален амплитуден анализатор (състоящ се от: ADC-DIDAC (France), интерфейсна платка, PC 286 или по-висок, с инсталирана програма ANL3).

3. Бележки по опитната постановка

В това упражнение се използват специални източници на електрони (β-частици и конверсионни електрони) ²⁰⁷Ві и ¹³⁷Cs (AMERSHAM), при които подложката и покритието са твърде тънки, за да се сведат до минимум загубите на енергия и обратното разсейване. При работа с тях се изисква особено внимание, за да не бъдат повредени.

Припомняме, че процесът вътрешна конверсия е пряко предаване на енергията на ядрения преход на един от атомните електрони (свързани). Обикновено найвероятна е конверсията върху електрон от К-слоя. Енергията на конверсионните електрони е **дискретна** (енергията на прехода минус енергията на връзка) и в спектъра те дават конверсионна линия. Конверсионните линии с известна енергия ще бъдат използвани за калибровката по енергия на спектрометъра.

Снемането на електронните спектри се извършва със сцинтилационен детектор със **стилбенов кристал (органичен сцинтилатор)**, монтиран в оловна защита. Стилбеновия кристал е снабден с входящо прозорче, закрито с много тънък алуминизиран майлар (**да се пази от механични увреждания!**). Електроните от източника преминават през около 1 ст въздух до детектора. Загубите на енергия на електроните в слоевете въздух и майлар не влияят съществено на експерименталните резултати.

Амплитудните спектри се набират в различни **групи от по 256 канала** за едно и също "живо" време на набиране L = 2000 s.

4. Теоретични бележки

За подробности се отнесете към лекциите "Сцинтилационни детектори", "Бетаразпадане, Бета-спектри" и "Вътрешна конверсия" в Записките към Курса по ЕЯФ

Известно е, че енергията на даден β -преход е дискретна (E₀), но енергийният спектър на излъчваните β -частици е непрекъснат и се простира от 0 до E₀. Това се дължи на факта, че освен β -частица, при β -разпадане се излъчва и "неуловимата" частица електронно неутрино (или анти-), която отнася част от енергията E₀ на β -прехода. Формата на β -спектъра е специфична и освен всичко друго е повлияна и от кулоновото взаимодействие на β -частицата със заряда на дъщерното ядро.

Чрез функцията на Ферми **F**(**Z**,**E**), която е известна в явен вид и е табулирана, се отчита влиянието на кулоновото поле на ядрото. **F**(**Z**,**E**) е различна за β⁻ и β⁺ разпадания. Обръщаме внимание, че **Z** е атомния номер на **дъщерното ядро**.

2

От теорията на β-разпадането при допускане, че:

масата на покой на неутриното $m_v c^2 = 0$

$$E_{v} = E_{0} + m_{e}c^{2} + m_{v}c^{2} - E_{e}$$
$$p_{v} = \frac{1}{c}\sqrt{E_{v}^{2} - (m_{v}c^{2})^{2}}$$

за експерименталния спектър на β-частиците се получава:

$$N_{E} \sim \frac{dW}{dE} = const | M |^{2} E_{e} \sqrt{E_{e}^{2} - (m_{e}c^{2})^{2}} [E_{0} - E_{e} + m_{e}c^{2}]^{2} F(Z,E)$$

При използване на **пълната енергия** ε в единици **m**_ec² = 511 keV, експерименталния спектър се изразява като:

$$N_{\varepsilon} = \text{const} \mid M \mid^{2} \varepsilon \sqrt{\varepsilon^{2} - 1} (\varepsilon_{0} - \varepsilon)^{2} F(Z, E)$$
$$\varepsilon = 1 + \frac{E_{k}}{m_{e}c^{2}} ; \varepsilon_{0} = 1 + \frac{E_{k}^{max}}{m_{e}c^{2}}$$

Където: **E_k^{max} е граничната кинетична енергия на β-частиците** в спектъра. Функцията:

$$K(\varepsilon) = \left[\frac{N_{\varepsilon}}{F(Z,E)\varepsilon\sqrt{\varepsilon^2-1}} \right]^{1/2} = \varepsilon_0 - \varepsilon$$

където N_ε е експерименталния спектър, е известна като График на Кюри.

Функцията **К**(ϵ) е линейна по ϵ (за разрешените β -преходи) и пресича абсцисата при ϵ_0 - граничната енергия на β -частиците, т.е. **К**(ϵ_0) = **0**.

Построяването на **Графика на Кюри** е единственият коректен начин за определяне на граничната енергия (ε_0) $\rightarrow E_k^{max}$.

На фигура 3-1 е показана схемата на разпадане на ¹³⁷Cs

Фигура 3-1 Схема на разпадане на ¹³⁷Сs

В настоящото упражнение се изследва β -прехода ¹³⁷Cs \rightarrow ¹³⁷Ba с E_k^{max} = 514

keV (94,4%, log ft = 9,63) (наличието на по-слаб преход с E_k^{max} = 1176 keV (5,6%, log ft = 12,1) не смущава силно изследването). Изследваният β-преход е забранен от 1 порядък, уникален (**n** = 1, Δ **P** =(-1)ⁿ, Δ **I** = 2), но точността на експеримента не позволява доказването на нелинейност на Графика на Кюри, дължаща се на степента на забрана.

Обръщаме внимание, че възбуденото състояние 662 keV в ядрото на ¹³⁷Ва е изомер с $T_{1/2}$ = 2,6 min . Изомерният преход с E_{γ} = 662 keV има тип и мултиполност M4.

5. Изпълнение на експерименталните задачи

1) Апаратурата се подготвя за работа, включва се и се прогрява за около 1 час.

2) Източникът ²⁰⁷Bi се поставя под детектора на определеното място в прободържателя и се снема амплитудния му спектър. Време на набиране L = 1000 s. (виж Фигура 3-2) **3)** Източникът ¹³⁷Cs се поставя под детектора на определеното място в прободържателя и в следващата група канали се снема амплитудният му спектър. Време на набиране L = 1000 s. Експерименталният спектър представлява сума от непрекъснат β -спектър, K-конверсионна линия (E_{CE} = 624 keV) (виж Фигура 3-3) и разпределение на комптонови електрони, получени при взаимодействието на γ -квантите с енергия 662 keV от ¹³⁷Cs в кристала на детектора. За да се отстрани влиянието на γ -квантите върху β -спектъра – следва т. 4).

4) Без да се изменя геометрията, между източника ¹³⁷Cs и детектора, на определеното място, се поставя Al-поглътител с дебелина 500 mg/cm² (№ 23 от комплекта – VA-H-402), който напълно поглъща излъчените от източника β-частици и конверсионни електрони, но е "прозрачен" за γ-квантите. В следваща група се набира спектъра, дължащ се само на γ-квантите с енергия 662 keV. Време на набиране L = 1000 s.

Поради ниския атомен номер на сцинтилатора (**стилбен**) - **Z**_{eff} ≈ 6, вероятността за фотоефект е нищожна в сравнение с тази за Комптон ефект, и в спектъра не се наблюдава фотопик, а **само комптоново разпределение** (виж Фигура 3-4).

5) От некоригирания спектър на източника ¹³⁷Cs (т. 3)) се изважда спектъра, дължащ се само на γ-квантите (т. 4)). Процедурата за изваждане е описана в упътването на програмата ANL3. Препоръчва се некоригирания спектър на ¹³⁷Cs да се прехвърли в свободна група канали и операцията да се извърши там.

Разликовият спектър съдържа импулси, дължащи се само на конверсионните електрони и β-частиците от източника ¹³⁷Cs.

6. Обработка на експерименталните данни

На следващите фигури е показан приблизителният вид на експерименталните спектри на ²⁰⁷Bi, ¹³⁷Cs и комптоновото разпределение от γ-квантите 662 KeV.

5

Фигура 3-2 Спектър на източника ²⁰⁷Ві

Фигура 3-4 Принос на комптоновото разпределение от γ-квантите 662 keV в некоригирания спектър на източника ¹³⁷Cs

1) Калибровката по енергии на спектрометъра се извършва по конверсионните линии на ²⁰⁷Ві по процедурата, дадена в описанието на програмата ANL3.

Първата линия с енергия $E_{ce} = 481,7 \text{ keV}$ е К-конверсионна линия на прехода с енергия $E_{\gamma} = 569,7 \text{ keV}$ и с квантов добив 1,5% на 100 разпада. Втората линия е с енергия $E_{ce} = 975,7 \text{ keV}$ и е К-конверсионна линия на прехода с енергия $E_{\gamma} = 1063,7 \text{ keV}$ и с квантов добив 7%.

При така извършената калибровка, **проверете** дали конверсионната линия на 137 Cs е с енергия E_{CE} = 624 keV. Съвпадението се счита добро, ако е в границите на ± 6 keV (т.е. ± 1 канал).

2) От коригирания и калибриран спектър на 137 Cs се избира частта на експерименталния β -спектър, като E_k [keV] \rightarrow N [брой импулси] в обхвата например от 150 до 470 keV. Обхватът е стеснен, за да се избегне влиянието на поглъщащите слоеве и влиянието на конверсионната линия на 137 Cs.

3) За всяка от точките на експерименталния β-спектър (за всяка E_k) намерете стойността на кулоновия фактор F(Z,E_k) от таблицата в Приложение № 1. Кулоновият фактор F(Z,E) е функция на заряда Z на дъщерното ядро (в нашия случай Ba, Z = 56) и енергията E_k на β-частиците. (Не интерполирайте, а избирайте стойността за най-близката енергия).

4) За всяка от точките на експерименталния β -спектър, превърнете кинетичната енергия E_k [keV] в пълна енергия ϵ в единици mc^2 .

5) За всяка от точките на експерименталния β-спектър пресметнете стойността на **К(ε). Постройте графично** функцията **К(ε) (График на Кюри)**. Примерният вид на **Графика на Кюри** е показан на следващата фигура.

Фигура 3-5 График на Кюри за β⁻-прехода ¹³⁷Сs → ¹³⁷Ва с Е_к^{max} = 514 keV (94,4%)

Продължението на линейната част на графика пресича оста **X** в точка ϵ_0 , която е максималната пълна енергия на β -спектъра на ¹³⁷Cs. Тъй като в справочната

литература се привежда максималната кинетична, а не пълната енергия, то получената стойност на максималната енергия ϵ_0 трябва да се превърне в кинетична E_k^{max} [keV].

По литературни данни максималната енергия на β -спектъра на ¹³⁷Cs е $E_k^{max} = 514$ keV. (Забележка: Възможно е получаването на завишена стойност на E_k^{max} поради наличието на поглъщащи слоеве: покритие на източника, въздух, майларово прозорче на детектора, които влияят по-силно върху нискоенергийната част на β -спектъра, както и поради наличието на по-слаб β -преход с по-висока енергия (виж фигура 3-1)).

За удобство при работата с експерименталните данни се предлага те да бъдат оформени в следната таблица:

Канал №	N(E _k) [бройка]	E _{k.} [kev]	F(Z,E _k)	ε=1+E _k /511	Κ(ε)
-	-	-	-	-	-
-	-	-	-	-	-

За пресмятанията се препоръчва използването на работна страница в **EXCEL** (програмата е на разположение на PC в лабораторията по EЯФ).

За построяването на **Графика на Кюри** се препоръчва използването на подходяща графична програма (напр. програмата **ORIGIN**, която е инсталирана на PC в лабораторията по ЕЯФ). На фигура 3-5 е показана апроксимацията на **К(є)** с права. Стойността на ε_0 може да бъде определена лесно от параметрите на линейния фит.

Като илюстративен материал към това упражнение са използвани експериментални данни, получени от студентите по време на занятия в лабораторията.

Напомняме, че експерименталните данни получени във всеки отделен експеримент са уникални, поради статистическия характер на измерваните величини и някои изменения в условията на експеримента.

Приложение №1

E _k	F	E _k	F	E _k	F	Ι	E _k	F	E _k	F		E _k	F
[keV]		[keV]		[keV]			[keV]		[keV]			[keV]	
122	10,792	182	9,276	242	8,408		302	7,835	362	7,428	4	422	7,119
124	10,724	184	9,242	244	8,386		304	7,820	364	7,416	4	424	7,110
126	10,656	186	9,208	246	8,364		306	7,805	366	7,404	4	426	7,100
128	10,588	188	9,174	248	8,342		308	7,790	368	7,392	4	428	7,091
130	10,520	190	9,140	250	8,320		310	7,775	370	7,380	4	430	7,082
132	10,460	192	9,106	252	8,298		312	7,760	372	7,368	4	432	7,073
134	10,400	194	9,072	254	8,276		314	7,745	374	7,356	4	434	7,064
136	10,340	196	9,038	256	8,254		316	7,730	376	7,344	4	436	7,054
138	10,280	198	9,004	258	8,232		318	7,715	378	7,332	4	438	7,045
140	10,220	200	8,970	260	8,210		320	7,700	380	7,320	4	440	7,036
142	10,168	202	8,941	262	8,191		322	7,686	382	7,310	4	442	7,027
144	10,116	204	8,912	264	8,172		324	7,672	384	7,300	4	444	7,018
146	10,064	206	8,883	266	8,153		326	7,658	386	7,290	4	446	7,008
148	10,012	208	8,854	268	8,134		328	7,644	388	7,280	4	448	6,999
150	9,960	210	8,825	270	8,115		330	7,630	390	7,270	4	450	6,990
152	9,912	212	8,796	272	8,096		332	7,616	392	7,260	4	452	6,982
154	9,864	214	8,767	274	8,077		334	7,602	394	7,250	4	454	6,975
156	9,816	216	8,738	276	8,058		336	7,588	396	7,240	4	456	6,967
158	9,768	218	8,709	278	8,039		338	7,574	398	7,230	4	458	6,960
160	9,720	220	8,680	280	8,020		340	7,560	400	7,220	4	460	6,952
162	9,678	222	8,655	282	8,003		342	7,548	402	7,211	4	462	6,944
164	9,636	224	8,630	284	7,986		344	7,536	404	7,202	4	464	6,934
166	9,594	226	8,605	286	7,969		346	7,524	406	7,192	4	466	6,929
168	9,552	228	8,580	288	7,952		348	7,512	408	7,183	4	468	6,922
170	9,510	230	8,555	290	7,935		350	7,500	410	7,174	4	470	6,914
172	9,470	232	8,530	292	7,918		352	7,488	412	7,165	4	472	6,906
174	9,430	234	8,505	294	7,901		354	7,476	414	7,156	4	474	6,899
176	9,390	236	8,480	296	7,884		356	7,464	416	7,146	4	476	6,891
178	9,350	238	8,455	298	7,867		358	7,452	418	7,137	4	478	6,884
180	9,310	240	8,430	300	7,850	1	360	7,440	420	7,128	4	480	6,876

Стойности на кулоновия фактор F(Z,E) при Z = 56 (Ba)