1/19

Софийски Университет "Св. Климент Охридски" Физически факултет

Структура на нисколежащи състояния в нечетните изотопи ^{99,101,103}Ru

Станимир Кисьов

・ 同 ト ・ ヨ ト ・ ヨ ト

97,99,101,103 Ru

z	99Pd 21.4 M 6: 100.00%	100Pd 3.63 D € 100.00%	101Pd 8.47 H € 100.00%	102Pd STABLE 1.02%	103Pd 16.991 D € 100.00%	104Pd STABLE 11.14%	105Pd STABLE 22.33%	106Pd STABLE 27.33%	107Pd 6.5E+6 Υ β-: 100.00%
45	98Rh 8.72 M €: 100.00%	99Rh 16.1 D e: 100.00%	100Rh 20.8 H € 100.00%	101Rh 3.3 Y € 100.00%	102Rh 207.3 D ε: 78.00% β-: 22.00%	103Rh STABLE 100%	104Rh 42.3 S β-: 99.55% ε: 0.45%	105Rh 35.36 H β-: 100.00%	106Rh 30.07 S β-: 100.00%
44	97Ru 2.83 D €: 100.00%	98Ru STABLE 1.87%	99Ru STABLE 12.76%	100Ru STABLE 12.60%	101Ru STABLE 17.06%	102Ru STABLE 31.55%	103Ru 39.247 D β-: 100.00%	104Ru STABLE 18.62%	105Ru 4.44 H β-: 100.00%
43	96Tc 4.28 D e: 100.00%	97Tc 4.21E+6 Y € 100.00%	98Tc 4.2E+6 Υ β-: 100.00%	99Tc 2.111E+5 Υ β-: 100.00%	100Tc 15.46 S β-: 100.00% ε: 2.6E-3%	101Tc 14.02 M β-: 100.00%	102Tc 5.28 S β-: 100.00%	103Tc 54.2 S β-: 100.00%	104Tc 18.3 M β-: 100.00%
42	95Mo STABLE 15.84%	96Mo STABLE 16.67%	97Mo STABLE 9.60%	98Mo STABLE 24.39%	99Mo 65.976 Η β-: 100.00%	100Mo 7.3E+18 Υ 9.82% 2β-:100.00%	101Mo 14.61 M β-: 100.00%	102Mo 11.3 M β-: 100.00%	103Mo 67.5 S β-: 100.00%
	53	54	55	56	57	58	59	60	N

Excitation energy ratios $R_{4/2}$ in neutron-rich Mo, Ru, Pd and Cd

э

2 / 19

<ロ> (四) (四) (三) (三)

Масова зависимост на едночастичните орбитали

Зависимост на енергиите на неутронните едночастични орбитали от масовото число. В изследваната област орбиталите $d_{5/2}$ и $g_{7/2}$ се намират близко по енергия и могат да бъдат използвани за възпроизвеждане на нисколежащите състояния.

Bohr and Mottelson,

Nuclear Structure, vol. I (1969)

Експериментална постановка

Смесена детекторна система от HPGe и LaBr₃ детектори за γ - спектроскопия (Букурещ, Румъния).

RoSphere

- 14 HPGe детектора висока разделителна способност по енергия
- 2 11 LaBr₃ детектора висока разделителна способност по време

5/19

Периоди на полуразпад на $7/2^+$ и $3/2^+$ в 99 Ru

Периоди на полуразпад на $7/2^+$ и $3/2^+$ в 101 Ru

7/19

Периоди на полуразпад на 7/2 $^+$ и (7/2) $^-$ в 103 Ru

8/19

Вероятности за преход

B(M1) и B(E2) стойности за $7/2^+ \rightarrow 5/2^+$ преходи в $^{97,99,101,103} {
m Ru}$

Isotope	E _{level} [keV]	E_{γ} [keV]	$T_{1/2}$ [ps]	B(M1) [W.u.]	B(E2) [W.u.]
⁹⁷ Ru	422	422	25 (8)	0.012 (4)	-
⁹⁹ Ru	341	341	40 (15)	0.014 (6)	0.04 (3)
¹⁰¹ Ru	307	307	54 (17)	0.014 (5)	1.4 (14)
¹⁰³ Ru	214	211	27 (10)		

 ${\sf B}({\sf M1})$ и ${\sf B}({\sf E2})$ стойности за $3/2^+ o 5/2^+$ преходи в $^{97,99,101}{\sf Ru}$

С. Кисьов

. ,	()		, ,	• • • •	
Isotope	E _{level} [keV]	E_γ [keV]	$T_{1/2}$ [ns]	B(M1) [W.u.]	B(E2) [W.u.]
⁹⁷ Ru	189	189	0.23 (2)	0.0122 (12)	30 (12)
⁹⁹ Ru	90	90	20.5 (6)	0.000180 (12)	52 (4)
101 Ru	127	127	0.56 (10)	0.019 (4)	23 (5)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Спектроскопски фактори от (d,p) реакции

⁹⁷Ru

E _{level}	J^{π}	L	S'
0.0	5/2+	2	3.43
189	3/2+		
421	7/2+	4	4.84
527	3/2+	2	0.84
770	3/2+	2	0.19
908	1/2+	0	1.15

10)1	Ru	
		i \u	

E _{level}	J^{π}	L	S'
0.0	5/2+	2	2.10
127	3/2+	2	0.067
307	7/2+	4	5.3
326	1/2+	0	0.96
421	3/2+	2	0.15
533	3/2+	2	0.72,5.8
597	(5/2-)	3	0.60,0.74
622	1/2 +	0	0.063
685		2	0.17,0.18
718	9/2+	1	0.017,0.018
972	3/2+	2	0.63,0.70

 $^{103}\mathsf{Ru}$

E _{level}	J^{π}	L	S'
0.0	3/2+	2	1.44
3.3	5/2+	2	1.35
136	5/2+	2	0.012
174	1/2+	0	0.75
215	7/2+	4	1.80
240	11/2-	5	3.2
298	(7/2)-	3	0.40
347	3/2+	2	0.060
405	(7/2)+	2	
433	1/2+	0	0.027
501	(5/2)+		
535	(3/2+,5/2+)	(2)	0.03
553	(1/2+)		
591	(5/2)+	2	0.35
624	(5/2+)	(2)	(0.009)
661.2	(3/2)+	2	0.251
697.4	7/2+,9/2+	4	0.71
736.1	1/2+	0	0.053

<ロト <問と < 臣と < 臣>

э

Систематика на нисколежащи състояния в Ru

3.1

Твърд триаксиален ротор плюс частица

Изследваните изотопи на Ru се намират в област, където се очаква появата на деформация. Съответно е възможна появата на триаксиалност под формата на твърд триаксиален ротор или γ -меко ядро. Моделни изчисления са направени в рамките на модела на твърд триаксиален ротор.

$$\kappa_{4} = 0.070 \ \mu_{4} = 0.39$$

$$\kappa_{5} = 0.062 \ \mu_{5} = 0.43$$

$$\gamma = (1/3) \arcsin \sqrt{(9/8)(1 - \frac{(X-1)^{2}}{(X+1)^{2}})}$$

$$\frac{\frac{\text{nucleus } \epsilon_{2}}{9^{9}\text{Ru} + 0.142 - 0.002 \ 28.0 \ 0.54}}{1^{101}\text{Ru} + 0.167 - 0.065 \ 26.0 \ 0.42}}$$

Твърд триаксиален ротор плюс частица

イロト イ押ト イヨト イヨト

3

Твърд триаксиален ротор плюс частица

nucleus	J_i^{π}	E_i^{exp}	J_f^{π}	E_f^{exp}	$B(M1)^{exp}$	$B(M1)^{th}$	$B(E2)^{exp}$	$B(E2)^{th}$
		(keV)		(keV)	(W.u.)	(W.u.)	(W.u.)	(W.u.)
$^{99}_{44}Ru_{55}$								
	$5/2^{+}$	0	$5/2^{+}$	0				
	$3/2^{+}$	89	$3/2^{+}$	89				
	$3/2^{+}$	89	$5/2^{+}$	0	0.000175(4)	0.045	50.2(10)	19.0
	$7/2^{+}$	341	$5/2^{+}$	0	0.014~(6)	0.00025	0.04	0.24
			$3/2^{+}$	89			3.7(14)	3.9
$^{101}_{44}$ Ru ₅₇								
	$5/2^{+}$	0	$5/2^{+}$	0				
	$3/2^{+}$	127	$3/2^{+}$	127				
	$3/2^{+}$	127	$5/2^{+}$	0	0.019(4)	0.0076	17.21(21)	0.49
	$7/2^{+}$	306	$5/2^{+}$	0	0.014(4)	0.0003	1.4(14)	0.05
			$3/2^{+}$	127			13(4)	19.9
$^{103}_{44}$ Ru ₅₉								
	$3/2^{+}$	0	$3/2^{+}$	0				
	$7/2^{+}$	214	$3/2^{+}$	0			70(30)	13
			$5/2^{+}$	3	0.08(3)	0.004		
			$5/2^{+}$	136	0.028(13)	0.006		

э

イロト イポト イヨト イヨト

IBM параметри за четни изотопи на Ru

В моделните пресмятания е използван мултиполният вид на хамилтониана на IBM, с отчетени три члена.

Зависимости между	
параметрите	
• $\epsilon = EPS$	
• a ₁ = 0.5 ELL	
● a ₂ = 0.5 QQ	

Енергии на пресметнатите състояния

IBM изчисления

В рамките на моделните изчисления се постига добор описание на енергиите на състоянията както в основната ивица, така и в β - и γ -ивиците в четните изотопи на Ru.

Вероятности за преход в рамките на пресмятанията

limit values from J. Stachel, P. Van Isacker and K. Heyde, PRC 25 650-657 (1982)

17 / 19

Енергии на пресметнатите състояния в рамките на IBFM

э

Structure of low-lying positive-parity states in ^{99,101,103}Ru from in-beam fast-timing measurements

 S. Kisyov^{1*}, S. Lalkovski^{1†}, D. Ivanova¹, N. Mărginean², D. Bucurescu², Gh. Căta-Danil²,
 I. Căta-Danil², D. Deleanu², D. Ghiţă², T. Glodariu², R. Lica², R. Mărginean², C. Miha¹⁷,
 A. Negret², T. Sava², E. Stefanova³, R. Suvaila¹, S. Toma², O. Yordanov³, N.V. Zamfir²
 ¹Faculty of Physics, University of Sofia "St. Kliment Ohridski", Sofia, Bulgaria
 ²"Horia Hulubei" National Institute for Physics and Nuclear Engineering, Magurele, Romania
 ³Institute for Nuclear Research and Nuclear Energy, Bulgaria Academy of Science, Sofia, Bulgaria

The neutron-deficient ^{99,101,103}Ru nuclei were studied from in-beam reaction data. Half-lives of excited states were measured with RoSphere and new results are presented. Rigid-Triaxial-Rotorplus-Particle model calculations were performed and compared to the experimental data.

PACS numbers:

I. INTRODUCTION

In the last years a number of fast-timing experiments were performed at IFIN-HH (Romania) aiming to study the structure of the low-lying excited states in the medium-mass odd-A nuclei. These studies were motivated by the scarce lifetime data in this energy and time range. of those low-lying states are having sub-nanosecond halflives [6], which is an excellent opportunity to apply a recently developed in-beam fast-timing method.

II. EXPERIMENTAL SET UP AND DATA ANALYSIS

◆ □ ▶ ◆ 合型

・ロト ・聞と ・ヨト ・ヨト