Физически факултет Софийски университет "Св. Климент Охридски"

Диана Кочева

Експериментално изследване на нисколежащите квадруполни възбуждания в ядрото ²¹²Ро

ΑΒΤΟΡΕΦΕΡΑΤ

на дисертация за присъждане на образователната и научна степен "ДОКТОР"

Професионално направление: 4.1 Физически науки Научна специалност: Ядрена физика

> Научен ръководител: проф. дфзн Георги Райновски

> > СОФИЯ • 2018

Докторантът е зачислен към катедра Атомна физика при Физически факултет на СУ "Св. Климент Охридски" редовна форма на обучение със заповед №РД 20-1029.

Резултатите от проведените експериментални изследвания и теоретични изчисления са разгледани в 6 публикации. Експериментите, свързани с научните изследвания в дисертационния труд, са проведени в Института по ядрена физика, Кьолн, Германия. Анализите на данните са направени във Физическия факултет на СУ "Св. Климент Охридски".

Дисертационният труд е съставен от 80 страници, разделени в 7 глави. Съдържа 29 фигури и 8 таблици, а библиографията обхваща 77 заглавия.

Дисертационният труд е обсъден на заседание на катедрен съвет в катедра Атомна физика при Физически факултет, СУ "Св. Климент Охридски", проведено на г., и насочен за обсъждане от Факултетен съвет за защита пред научно жури в състав:

1.

2.

3.

- 4.
- 5.

Съдържание

00	Основна цел на дисертационния труд					
Ст	груктура и обем на дисертацията	1				
1	Увод	2				
2	Теоретични модели 2.1 Слоест модел	2 2 3 4				
3	Определяне времената на живот на първите три 2 ⁺ възбудени състояния в ядрото ²¹² Ро 3.1 Времена на живот на 2 ⁺ _{2,3} състоянията	6 6 9				
4	Интерпретация на резултатите	14				
5	Заключение	18				
Ст	исък на публикации	19				
Бյ	агодарности	21				

Основна цел на дисертационния труд

Основната цел на дисертационния труд е експерименталното изследване на свойствата на нисколежащите 2^+ състояния в ядрото 212 Po, за да се изясни преходът от едночастично (сениорити) поведение към колективно поведение на ядра с два протона и два неутрона извън запълнени слоеве. Неочакван резултат е, че силата на прехода от първото 2^+ състояние до основното състояние е по-слаба от теоретично пресметнатата, използвайки едночастичното приближение. Тази особеност се вижда също и в свойствата на еднофононното състояние със смесена симетрия на 212 Po, което се оказва първото изовекторно състояние, идентифицирано експериментално около двойномагичното ядро 208 Pb. Идентифицирането на това състояние представлява отправната точка в дисертационния труд. Крайните резултати ясно показват особеност, която не може да бъде обяснена в рамките на съвременните теоретични модели, тъй като едночастичният характер на ядра с няколко валентни нуклеона над ядката 208 Pb се запазва, противно на очакванията.

Структура и обем на дисертацията

Глава 1 представлява увод, който започва с преглед на основните модели за описание на структурата на атомните ядра. Тук е представена мотивацията за проведените експериментални изследвания в дисертационния труд.

В Глава 2 са описани накратко теоретичните модели, използвани за описание на експерименталните резултати, а именно: слоестият модел, идеята за сениорити схема, колективният модел на Бор и Мотелсон и моделът на взаимодействащи бозони, в който се дефинират състоянията със смесена симетрия.

В Глава 3 от дисертацията е представен експериментът, посветен за определяне на времената на живот на $2^+_{2,3}$ състоянията на ²¹²Ро, използвайки метода на отслабване на Доплеровото отместване. Този експеримент бе проведен с цел идентифициране на еднофононното състояние със смесена симетрия на ²¹²Ро. Описани са анализът на данни, резултатите и теоретичните пресметания за описание на експерименталните резултати. Основният извод от тази глава е идентифицирането на 2^+_2 състояние като еднофононното състояние със смесена симетрия на ²¹²Ро.

В Глава 4 е представен експериметът за измерване на времето на живот на първото възбудено 2⁺ състояние на ядрото ²¹²Ро посредством метода на откатните ядра. Описани са анализът на данни, резултатите и теоретичните пресметания в рамките на слоестия модел. Основният извод е наблюдаването на ниска квадруполна колективност в структурата на това състояние.

Глава 5 е посветена на проверка на известната до момента стойност на времето на живот на първото възбудено 2⁺ състояние на ядрото ²¹⁰Po, използвайки данни от експеримента, представен в глава 3. Получената стойност от анализа, представен в дисертационния труд, е три пъти по-малка от приетата досега, но все пак недостатъчно ниска за доброто описание на свойствата на ²¹⁰Po в рамките на слоестия модел в едночастично приближение. Тук са представени и теоретични пресмятания на базата на квазичастичния фононен модел, които също не успяват да възпроизведат приведените вероятности за преход в основната ивица $2_1^+ - 4_1^+ - 6_1^+ - 8_1^+$ на ²¹⁰Po.

В Глава 6 са представени резултатите от пресмятанията за свойствата на нисколежащите състояния в ядрата ²¹²Po, ²¹⁰Po и ²¹⁰Pb на базата на слоестия модел в едночастично приближение с използването на различни ефективни заряди. Вижда се невъзможността за описанието на B(E2) стойностите на основните преходи $2_1^+ - 4_1^+ - 6_1^+ - 8_1^+$ в тези ядра. Направени са пресмятания за ядрата ²¹⁰Po и ²¹⁰Pb в рамките на слоестия модел в голям базис, демонстрирайки, че и този подход е недостатъчен. Глава 7 представлява заключение, в което са посочени основните изводи от научните изследвания в дисертационния труд.

1 Увод

Изследванията, посветени на атомното ядро, представляват голям интерес от самото му откриване преди повече от 100 години. Въпреки малкия си размер то представлява една доста сложна система, която може да бъде съставена от няколко до стотици нуклона, взаимодействайки си чрез ядрената и Кулоновата сили. Поради разнообразието на атомните ядра, разположени на различни места по картата на изотопите, се налага използването на различни модели, които да обяснят експериментално наблюдаваната им структура. За описанието на леки ядра и на такива в близост до запълнени слоеве се прилага слоестият модел [1, 2]. При ядра, намиращи се извън запълнени слоеве, се използва колективният модел на Бор и Мотелсон [3]. Друг модел за описание на колективните възбуждания е моделът на взаимодействащи бозони [4]. В следващата глава е дадено кратко описание на тези модели, по-подробно те са представени в глава 2 на дисертацията.

Съществуват две основни схващания за описанието на ядрените възбуждания - едночастичните и колективни движения. Обяснението на ядрената структура в термини на тези два режима е едно от предизвикателстава пред ядрената физика. Поради тази причина свойствата на ядра, които се намират в близост до двойномагични ядра, представляват изключителен интерес, тъй като те могат да бъдат добре описани в рамките на слоестия модел, а едновременно с това валентните им частици могат да предизвикат колективно поведение.

Ядрото ²¹²Ро има два протона и два неутрона повече от двойномагичното ядро ²⁰⁸Рb, което го прави добра основа за изучаване на промяната от едночастично към колективно поведение в масовата област $A \approx 208$. От микроскопична гледна точка валентните неутрони на ²¹²Ро се намират в $2g_{9/2}$ слоя, а протоните - в $1h_{9/2}$. Предполага се, че основната ивица $2_1^+ - 4_1^+ - 6_1^+ - 8_1^+$ на ²¹²Ро следва т.нар. сениорити модел [5]. От този подход, следва, че 8_1^+ състоянието е изомерно, което е доказано експериментално по-късно [6]. Въпреки досегашните изследванията за това ядро информация на времената на живот на 2_1^+ и 4_1^+ възбудени състояния все още липсва [7].

Друга характерна особеност за такива ядра е наличието на нисколежащи изовекторни 2^+ състояния, известни като състояния със смесена симетрия (СяСС). Те са дефинирани в рамките на модела на взаимодействащи бозони с протон-неутронни степени на свобода (IBM-2) [4]. Експерименталният сигнал за тези състояния е наблюдаването на силен M1 преход до еднофононното състояние с пълна симетрия [8, 9]. Съществуват два потенциални кандидата за еднофононното състояние със смесена симетрия в ядрото ²¹²Ро, тъй като $2^+_{2,3}$ състоянията се разпадат предимно до 2^+_1 със силно изразени M1 преходи [7, 10]. За еднозначното идентифициране на някое от тези състояния като ССС е необходима информация за времената на живот на $2^+_{2,3}$ състоянията.

2 Теоретични модели

2.1 Слоест модел

Ядреният слоест модел е предложен независимо един от друг от Maria G. Mayer [1] и Haxel, Jensen и Suess [2]. Огромният успех на този модел се дължи на това, че успява да възпроизведе магическите числа.

За разлика от атомните системи в ядрата не съществува източник на централно поле. Основното предположение на слоестият модел е, че единичен нуклеон се движи в ос-

реднения потенциал на всички други нуклеони. Тук многочастичното взаимодействие се разглежда на основата на двунуклеонно взаимодействие.

$$H = \underbrace{\sum_{i=1}^{A} \left[\frac{\vec{p_i}^2}{2m_i} + U_i(r_i) \right]}_{\equiv H_0} + \underbrace{\sum_{i>k=1}^{A} V_{ik}(\vec{r_i} - \vec{r_k}) + \sum_{i=1}^{A} U_i(r_i)}_{\equiv H_{res}}$$
(1)

Добро приближение за едночастичен потенциал U(r) е този на сферичния хармоничен осцилатор. За да възпроизведе експериментално наблюдаваните енергетични състояния, той се модифицира с два допълнителни члена, свързани със спин-орбиталното взаимодействие и големината на орбиталния ъглов момент [11].

$$U(\vec{r}) = \frac{1}{2}m\omega^2 \vec{r^2} - V_l \vec{l^2} - V_{ls} \vec{l} \cdot \vec{s}$$
⁽²⁾

Разликата между едночастичния потенциал U(r) и сумата на двунуклеонните взаимодействия наричаме остатъчно взаимодействие (израз 1). Това взаимодействие е минимално при ядра с един нуклеон извън запълнен слой.

При наличие на няколко валентни нуклеона от съществено значение е силата на сдвояване, вследствие на която два нуклеона се свързват в двойка до J = 0. При наличие на j^n конфигурация е интересно да се определи най-малката стойност на n, при която ще се получи J ($J \neq 0$). Тази стойност може да се отбележе с ν . Ясно е, че в конфигурацията $j^{\nu}J$ няма частици, сдвоени до J = 0. Прието е да се казва, че такова състояние има *сениорити* ν . С други думи, ν представлява броя несдвоени частици за дадено състояние. Основното преимущество на сениорити схемата е, че матричните елементи между j^n конфигурации може да се редуцират до тези на j^{ν} . По този начин става възможно приложението на слоестия модел за ядра с повече от една или две валентни частици.

С нарастване на броя на нуклеоните, намиращи се извън запълнените слоеве, влиянието на остатъчното взаимодействие върху средния потенциал се усилва, което води до намаляване на стабилността на сферичната форма на ядрата. Приложимостта на слоестия модел става невъзможна или поне много усложнена. При малък брой нуклони извън четно-четната ядка се наблюдават възбуждания, свързани с вибрационни движения около сферично симетричната форма. Тези възбуждания имат колективен характер.

2.2 Колективни движения

Колективните модели описват ядрото не като съставено от много отделни частици, а като цялостен обект - квантово-механична капка. В този случай възбужданията представляват трептения на повърхността на тази капка и/или въртения около ос, различна от оста на симетрия (при деформираните ядра). В случая на сферични ядра колективните възбудени състояния отговарят на вибрации на повърхността около равновесната сферична форма. В модела на Бор и Мотелсон колебанията на ядрената повърхност се описват от изменението на ядрения радиус. Той се задава като развитие в ред по сферични хармоники:

$$R(\theta, \phi, t) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}(t) Y_{\lambda\mu}(\theta, \phi) \right)$$
(3)

Параметрите $\alpha_{\lambda\mu}$ са динамични променливи, описващи деформираната повърхност. При разглеждане на нискоенергетичните възбуждания от основно значение са квадруполните вибрации ($\lambda = 2$), при които $\alpha_{\lambda=2,\mu}$ изчезва за четните стойности на μ . Хамилтонианът, който описва такива квадруполни вибрации, се задава във вида [11]:

$$H = T + V = \frac{1}{2}B\sum_{\mu} \left|\frac{\mathrm{d}\alpha_{2\mu}}{\mathrm{d}t}\right|^2 + \frac{1}{2}C\sum_{\mu} |\alpha_{2\mu}|^2 \tag{4}$$

където B е масов параметър, а C е параметър на еластичността. Той представлява сума от хамилтониани на несвързани хармонични осцилатори със собствени честоти

$$\omega = \sqrt{C/B} \tag{5}$$

При прехода на ядрото от едно състояние в друго енергията се изменя с величина, кратна на $\hbar\omega$. Елементарните възбуждания на повърхностните колебания на ядрата могат да се разглеждат като квазичастици, наричани в конкретния случай фонони [12]. При разглеждане на такива колективни възбудени състояния на ядрените системи е удобно да се използва формализмът на вторично квантуване. В представяне чрез числа на запълване вълновата функция зависи от броя на фононите n_b във всяко състояние. Операторите \mathbf{b}^{\dagger} и **b** описват раждането и изчезването на един фонон:

$$\mathbf{b}|n_b\rangle = \sqrt{n_b}|n_b - 1\rangle \tag{6}$$

$$\mathbf{b}^{\dagger}|n_{b}\rangle = \sqrt{n_{b}+1}|n_{b}+1\rangle \tag{7}$$

Възбудено състояние с N фонона може да се опише с помощта на основното състояние по следния начин:

$$|N_{\rm ph}\rangle = (\mathbf{b}^{\dagger})^N |\mathbf{0}\rangle. \tag{8}$$

2.3 Състояния със смесена симетрия (СяСС)

Състоянията със смесена протон-неутронна симетрия са дефинирани в рамките на модела на взаимодействащи бозони с протон-неутронни степени на свобода (IBM-2) [4, 13]. Градивните елементи в този модел са бозоните, които се разглеждат като сдвоени двойки нуклони от два типа "s" и "d", съответно имащи ъглов момент $L=0\hbar$ и $L=2\hbar$. Ядрените състояния са формирани като комбинации от тези бозони. Общият брой бозони N е запазваща се величина, която се определя като сумата от половината протони и половината неутрони, определени спрямо най-близкия запълнен слой. Алгебричната група, която представя този вид симетрия, е U(6). Тъй като всички бозонни състояния са с определен ъглов момент, ние се интересуваме и от групата, която запазва пространствената изотропия, а именно O(3). Тя е подгрупа на U(6) и съществуват само три вериги, чрез които по алгебричен начин може да се достигне от U(6) до O(3). Интерес за нас представлява веригата: U(6) \supset U(5) \supset O(5) \supset O(3), която отговаря на вибрационните възбуждания на ядрената система.

IBM-2 хамилтонианът може да се представи като:

$$H = H_{\pi} + H_{\nu} + V_{\pi\nu} \tag{9}$$

където членовете H_{π} и H_{ν} представляват хамилтониани за протони и неутрони, а $V_{\pi\nu}$ описва протон-неутронното взаимодействие между съответните бозони като запазва поотделно броя протонни и неутронни бозони. Наличието на различни бозони за протони и неутрони води до поява на допълнителна степен на свобода, което от своя страна води до нова симетрия, наречена *F*-спин. Тази симетрия притежава класове собствени състояния, които се характеризират със симетрия относно взаимна размяна на произволна двойка протонен и неутронен бозон. Състояния, които са напълно симетрични при тази операция, се наричат състояния с пълна симетрия (СяПС). Състояния, които имат поне една антисиметрична двойка, се наричат състояния със смесена симетрия (СяСС). На Фиг. 1 е показан спектъра на възбуждане, предсказан от IBM-2, за система, която е съставена от един неутронен бозон и един протонен бозон. Хамилтионианът на такава системата се задава като:

$$H = \epsilon (n_{d_{\pi}} + n_{d_{\nu}}) + \lambda \hat{M} \tag{10}$$

където $\hat{M} = [F_{max}(F_{max} + 1) - \hat{F}^2]/2$ е опростена форма на оператора на Майорана [14], която има ненулеви стойност само за СяСС.

Фигура 1: Спектър от схематичен IBM-2 хамилтониан с нисколежащи колективни състояния с U(5) симетрия и бозонни числа $N_{\pi} = N_{\nu} = 1$ [8].

Поради антисиметрията между протонните и неутронните възбуждания СяСС са известни и като изовекторни колективни състояния. От друга страна операторът за M1преход също има изовекторна природа, поради което M1-преходите са забранени между СяПС, но са много силни между СяСС и СяПС със същия брой фонони. M1 операторът може да се представи като сума от F-скаларна (симетрична) и F- векторна (антисиметрична) части [8]:

$$T(M1) = \sqrt{\frac{3}{4\pi}} [g_{\pi}L_{\pi} + g_{\nu}L_{\nu}]\mu_N$$
(11)

$$= \sqrt{\frac{3}{4\pi}} \left[\frac{N_{\pi} g_{\pi} + N_{\nu} g_{\nu}}{N} L_{tot} + (g_{\pi} - g_{\nu}) \frac{N_{\pi} N_{\nu}}{N} \left(\frac{L_{\pi}}{N_{\pi}} - \frac{L_{\nu}}{N_{\nu}} \right) \right] \mu_{N}$$
(12)

Именно това формира уникалния експериментален сигнал за идентификация на еднофононните $2^+_{1,ms}$ състояния - те се разпадат със силни M1 преходи до еднофононното състояние с пълна симетрия 2^+_1 . От друга страна, $2^+_{1,ms}$ е еднофононно състояние и трябва да има колективни E2 матрични елементи с основното състояние за протони и неутрони, но с противоположен знак, което води до частично анулиране в пълния матричен елемент. Така за прехода $2^+_{1,ms} \rightarrow 0^+_1$ се очаква да бъде няколко W.u., което е допълнителният критерии за идентификация на еднофононното $2^+_{1,ms}$ състояние [8].

3 Определяне времената на живот на първите три 2⁺ възбудени състояния в ядрото ²¹²Ро

3.1 Времена на живот на $2^+_{2,3}$ състоянията

За определяне времената на живот на $2^+_{2,3}$ възбудени състояния в ядрото ²¹² Ро, които са кандидати за негово еднофононно състояние със смесена симетрия, беше проведен експеримент на тандемния ускорител в Института за ядрена физика в Кьолн, Германия. Възбудените състояния в ядрото ²¹² Ро бяха заселени със следната трансферна реакция ²⁰⁸ Pb(¹²C, ⁸Be)²¹² Ро като снопът бе ускорен до 62 MeV. Тъй като използваният метод за определеня времената на живот е методът на отслабване на Доплеровото отместване (DSAM) [15], мишената от Pb беше с дебелина 10 mg/cm². За регистрирането на γ лъчението бяха използвани 12 свръхчисти германиеви (HpGe) детектора, разположени в три основни направления - 6 детектора на 35° спрямо посоката на снопа, 5 на 142.3° и 1 на 0°. За регистриране на леките заредени частици беше поставен пръстен от 6 соларни клетки, който покриваше пространствен ъгъл между 116.8° и 167.2°. Условието за записване на събитие е съвпадение от сигнали между поне една соларна клетка и един германиев детектор (събитие между частица и γ) или поне два германиеви детектора ($\gamma - \gamma$ събитие).

Събитията на съвпадение между частици и γ -кванти бяха сортирани в три матрици спрямо трите различни ъгли, на които са разположени германиевите детектори. На Фиг. 2(a) е показана проекцията на една такава матрица. Спектърът на γ -лъчи, получен в съвпадение с частта на частици, обозначени като "²¹²Po"в тази проекция, е показан на Фиг. 2(b). Основните преходи с енергии 727 keV, 405 keV и 223 keV са от ядрото ²¹²Po [16]. От този спектър се вижда, че са заселени 2^+_2 и 2^+_3 възбудени състояния в ²¹²Po с енергии съответно 1512 keV и 1679 keV [10]. Тези състояния са добри кандидати за еднофононното състояние със смесена симетрия в ядрото ²¹²Po, тъй като те се разпадат предимно до първото възбудено 2⁺ състояние с енергии на преходите съответно 785 keV и 952 keV. От отношенията на мултиполно смесване +0.09(3) и +0.65(50) [10] се вижда, че основният преход, който се осъществява и при двата разпада, е *M*1.

Двете линии имат добре изразена Доплерова форма, което позволява да бъдат определени времената на живот на тези две състояния. За целта бяха направени Монте Карло симулации за отчитане на ядрените и електронните спирачни способности на откатните ядра в материала на мишената (и стопера). Бяха направени два анализа за определяне времето на живот посредством формата на линията - при първия беше използвана програмата DESASTOP [17], а при втория - софтуерният пакет APCAD [18,19]. В двата анализа се отчитат отклика на детекторите, геометрията на експеримента, ограничението на кинематиката на реакцията, наложено от позицията на соларните клетки, както и историята на заселване на изследваното състояние. Стъпките от анализа на данни е описан подробно в раздел 3.2. в дисертацията. Тук ще покажем крайните резултати от анализа. Времената на второто 2^+_2 състояние с енергия 1512 keV и на третото 2^+_3 състояние с енергия 1679 keV бяха определени от формата на линиите на преходите с енергии 785 keV и 952 keV. На Фиг. 3 са показани примерни фитове на тези линии, получени от програмата APCAD. Крайните резултати за времената на живот на тези две състояния и техните вероятности за преход са представени в Таблица 1.

От Таблица 1 се вижда, че 2_2^+ състояние се разпада до 2_1^+ състояние със силен M1 преход, от което може да заключим, че 2_2^+ състояние в ядрото ²¹²Ро има изовекторна природа и като такова то може да се приеме поне като фрагмент от еднофононното състояние със смесена симетрия на ²¹²Ро. Това представлява първото идентифициране на нисколежащо изовекторно състояние в масовата област около двойномагичното ядро ²⁰⁸Pb. От друга страна, всички B(E2) стойности са ниски, което предполага липса на колективността на

Фигура 2: (a) Проекция на матрицата на съвпадение между частици и γ -кванти на 142°. Заградените области представляват частици, които са в съвпадение с γ -лъчи от съответните ядра. (b) Спектърът на γ -лъчи, получен в съвпадение с частта на частици, обозначени като "²¹²Po"в (a).

Фигура 3: Примерен фит на формата на линията на преходите с енергия 785.3 keV ($2_2^+ \rightarrow 2_1^+$)(a) и 952.1-keV ($2_3^+ \rightarrow 2_1^+$)(b), получени с програмата APCAD. Линията с енергия 785 keV е фитирана едновременно с прехода с енергия 780.4 keV, който произлиза от разпада на 7⁽⁺⁾ състоянието на ²¹²Ро с енергия 3155 keV ($\tau = 0.12(6)$ ps) [16].

Таблица 1: Финални резултати за времената на живот на 2^+_2 и 2^+_3 състояния в ядрото ²¹²Ро и техните приведени вероятности за преход. Дадени са енергиите на състоянията (E_{level}) , спинът и четността на началното (J^{π}_i) и крайното състоние (J^{π}_f) , относителните интензивности (I_{γ}) и отношението на мултиполно смесване (δ) . За определяна на приведените вероятности за преход са отчетени коефициентите на вътрешна конверсия.

-			±		± '		-	1
E_{level}	J_i^{π}	J_f^{π}	$I_{\gamma}{}^{a}$	δ^{σ}	$\mid \tau \text{ (ps)}$	$\tau \ (ps)$	τ (ps)	Transition strength ⁶
(keV)		Ū	%		An. I	An. II	Adopted	$J_i^{\pi} \to J_f^{\pi}$
1512	2^{+}_{2}	0_{1}^{+}	26(3)		0.73(7)	0.69(6)	0.71(9)	B(E2) = 29(4)
		2^{+}_{1}	100(1)	0.09(3)				B(M1) = 0.126(16)
								B(E2) = 24(16)
1679	2^{+}_{3}	0_{1}^{+}	35(8)		0.82(4)	0.74(7)	0.78(8)	B(E2) = 20(5)
		2^{+}_{1}	100(19)	0.65(50)				B(M1) = 0.042(20)
								B(E2) = 290(273)

 a Данните са взети от [7].

бДанните са взети от [23]

 $^{e}B(E2)$ стойностите са дадени в e^{2} fm⁴ (1 W.u.= 75.09 e^{2} fm⁴), B(M1) стойностите са дадени в $\mu_{\rm N}^{2}$.

 2_2^+ и 2_3^+ състоянията, която се очаква да се наблюдава във вибрационните ядра. Тази особеност ни мотивира да измерим времето на живот на първото възбудено 2^+ състояние в ядрото 212 Ро, за да получим допълителна информация относно неговата квадруполна колективност.

3.2 Време на живот на 2_1^+ състоянието

За определяне времето на живот на 2_1^+ състоянието в ²¹²Ро се проведе втори експеримент на тандемния ускорител в Института за ядрена физика в Кьолн, Германия. Реакцията, която използвахме, е същата като при предишния експеримент - ²⁰⁸Pb(¹²C,⁸Be)²¹²Po. Методът, използван за измерване на времена на живот в този случай, е методът на откатните ядра (RDDSM) [15,20]. Използваната мишена е с дебелина 0.6 mg/cm² Pb върху подложка от 2 mg/cm² Au. Енергията на снопа беше избрана така, че след преминаването му през подложката да има енергия 62 MeV. За стопер се използва фолио от 2 mg/cm² Au. По време на експеримента записахме данни за шест различни разстояния между мишената и стопера: 25 µm, 35 µm, 43 µm, 55 µm, 70 µm и 100 µm.

За регистрирането на γ -лъчението бяха използвани 11 НрGe детектори - 6 детектора на 35° спрямо посоката на снопа и 5 на 142.3°. За регистриране на леките заредени частици се използваха 6 соларни клетки, покриващи пространстен ъгъл между 116.8° и 167.2°. Условието за записване на събитие, е съвпадение от сигнали между поне една соларна клетка и един германиев детектор (събитие между частица и γ) или поне два германиеви детектора ($\gamma - \gamma$ събитие).

Събитията на съвпадение между частици и γ -кванти бяха сортирани в дванадесет матрици спрямо разстоянията между мишената и стопера и ъглите, на които са разположени германиевите детектори. На Фиг. 4(а) е показана проекцията на една такава матрица. Спектърът на γ -лъчи, получен в съвпадение с частта на частици, обозначени като "²¹²Po & ²⁰⁰Tl"в тази проекция е показан на Фиг. 4(b). Най-силните преходи тук са между състояния от ядрото ²⁰⁰Tl, което се е получило от реакцията ¹⁹⁷Au(¹²C,2 α n) в подложката на мишената или в стопера. Въпреки това основните линии от преходи в ядрото ²¹²Po също се виждат - 727 keV, 405 keV и 223 keV. Нещо повече формата на линията с енергия 727 keV, която съответства на прехода от 2¹₁ състоянието до основното състояние, има добре изразено Доплерово отместване. На Фиг. 5 се вижда, че интензивността на пика на отместената

Фигура 4: (a) Проекция на матрицата на съвпадение между частици и γ -кванти на 142° и разстояние между мишената и стопера D=43 μ m. Заградените области представляват частици, които са в съвпадение с γ -лъчи от съответните ядра. (b) Спектърът на γ -лъчи, получен в съвпадение с частта на частици, обозначени като "²¹²Po & ²⁰⁰Tl"в (a).

За анализ на данни от RDDSM-експерименти обикновено се използва методът за анализ DDCM (Differential decay curve method) [21, 22]. При него времето на живот на дадено състояние се определя, като се изследва промяната на съотношението на площите на Доплерово отместения (I_{sh}) и неотместения (I_{un}) пик в зависимост от разстоянието между мишената и спиращото фолио. Когато тези интензивности са получени от спектри в съвпадение с отместената компонента на директен захранващ преход, то формулата за определяне на времето на живот се дава по следния начин:

$$\tau_i(x) = \frac{I_{un}(x)}{\langle v \rangle \frac{d}{dx} I_{sh}(x)}$$
(13)

В рамките на настоящия експеримент това условие изисква анализ на събития на съвпадения между частица и два γ -кванта, което не е възможно заради нивото на статистика, с което разполагаме. Благодарение на начина, по който се захранва 2⁺ състоянието в използваната трансферна реакция, гореспоменатото изискване може да се пренебрегне. За повече детайли насочваме читателя да погледне раздел 4.2. в дисертацията. Тук ще споменем само основната особеност, а именно влиянието на прехода 4_1^+ в анализа. На фиг. 5 са показани отместените и неотместените компонененти на линията с енергия 727 keV $(2^+_1 \rightarrow 0^+_1)$ за три различни дистанции на плънджерното устройство. Вижда се, че с нарастването на това разстояния се увеличава интензивността на отместената част на линията. Представена е също така и линията на прехода $4^+_1 \rightarrow 2^+_1$ с енергия 405 keV. Вижда се, че тя има само спряла компонента за всички разстояния, следователно, този преход може да донесе принос само в частта на спрялата компонента на линията с енергия 727 keV, но не и на отместената ѝ част. Поради тази причина нейното влияние може да се елиминира като броят импулси от $4^+_1 \rightarrow 2^+_1$ прехода се извади от броя импулси от интензивността на спрелия пик на $2^+_1 \to 0^+_1$, отчитайки калибровката по ефективност на детекторите. Отчитайки тази и още няколко особености в захранването на първото възбудено 2⁺ състояние, ние приехме, че спектрите, получени в съвпадение с частици, регистрирани от соларните клетки, могат да се разглеждат като спектри в съвпадение с отместените компоненти на всички преходи, заселващи 2_1^+ състоянието директно. Следователно, интензивностите I_{sh} и I_{un} от фиг. 5 могат да бъдат използвани в уравнение 13.

Анализът на данни с DDCM изисква познаването на скоростта на откатните ядра. За определянето ѝ два подхода се използваха. Единият включва Монте Карло симулации за пресмятане на средното време за преминаване на ядрата на ²¹²Ро във вакуум за различните дистанции, изполвайки програма APCAD [18,19]. Отчитайки геометрията на експеримента и кинематиката на реакцията, бе определена средната скорост от всички дистанции да бъде $\langle v \rangle = 0.75(10)\%$ с. Вторият подход е експерименталното определяне на скоростта от центроидите на отместената и неотместената компонента на прехода с енергия 727 keV. Получената по този начин стойност е $\langle v \rangle = 0.72(5)\%$ с, която е добре съгласувана с пресметната от симулациите. За определянето на времето на живот използвана беше експериментално определената стойност за скоростта на откатните ядра, тъй като се очаква тази процедура да бъде по-точна.

На фиг. 6 е показан фитът за определяне на времето на живот на първото 2^+ състояние в ²¹²Po. Крайната стойност, която сме приели след налагането на всички условия (детайлно описание на тях е дадено в раздел 4.2. в дисертацията), е $\tau(2_1^+, E_x = 727 \text{ keV}) = 20.5(26)$ ps. Това време на живот отговаря на приведена вероятност за преход $B(E2; 2_1^+ \rightarrow 0_1^+) =$ 193(24) $e^2 \text{fm}^4 = 2.6(3)$ Wu. Тази стойност показва много ниска колективност в структурата на 2_1^+ състоянието в ²¹²Po.

Фигура 5: Отместените и неотместени компонененти на линията с енергия 727 keV ($2_1^+ \rightarrow 0_1^+$) на задни (a) и предни ъгли (b) за три различни разстояния между мишената и стопера: 25 μ m, 43 μ m, 100 μ m. В горните ъгли е показана линията на прехода с енергия 405 keV ($4_1^+ \rightarrow 2_1^+$) за съответните ъгли и разстояния.

Фигура 6: Времето на живот на първото 2^+ състояние в ²¹²Ро, определено от данните на предни (отляво) и на задни ъгли (отдясно). В средата са показани интензивностите на отместената компонента за различните разстояния между мишената и стопера. Непрекъснатите линии са фитирани през експерименталните точки, за да може да се определят производните им стойности. Най-долу са сравнени интензивностите на неотместената компонента с криви, които представляват произведението между времето на живот и производните, получени от фита за интензивностите на отместената компонента.

4 Интерпретация на резултатите

Най-опростеното описание на нисколежащите възбуждания в ядрото ²¹²Ро може да се даде в рамките на слоестия модел в едночастично приближение. ²¹²Ро има два неутрона и два протона над запълнените слоеве на ядрото ²⁰⁸Рb като неутроните се намират в слоя $2g_{9/2}$, а протоните - в $1h_{9/2}$. Взаимодействието между валентните частици и ефективните електромагнитни оператори могат да се вземат от експерименталните данни за съседните ядра. В това приближение ²¹⁰Pb отговаря на два неутрона повече, намиращи се в конфигурация $2g_{9/2}$, по отношение на ядрото ²⁰⁸Pb, а ²¹⁰Po отговаря на два протона в $1h_{9/2}$. Взаимодействието между протон в $1h_{9/2}$ слоя и неутрон в $2g_{9/2}$ слоя се определя от ядрото ²¹⁰Bi. При този подход M1 операторът се определя от магнитните моменти на основните състояния на ²⁰⁹Pb и ²⁰⁹Bi, които водят до $g_{\nu} = -0.33$ и $g_{\pi} = +0.91$. Ефективните заряди, $e_{\nu} = 1.04$ и $e_{\pi} = 1.52$, за E2 оператора бяха определени от измерените $B(E2; 8_1^+ \to 6_1^+)$ стойности за ²¹⁰Pb и ²¹⁰Po.

На фиг. 7 е показано сравнението между експерименталните възбудени състояния в ядрото ²¹²Ро с теоретично пресметнатите такива. Вижда се, че повечето нива са добре описани в рамките на слоестия модел, също така, че ираст състоянията на ²¹²Ро следват поведението, характерно за т.нар. сениорити схема [24].

Фигура 7: Сравнение между експерименталните нисколежащи възбудени състояния в ядрото 212 Po (a) с теоретично пресметнатите такива (b). Енергиите на нивата са дадени в keV.

В таблица 2 са дадени стойностите за експерименталните вероятности за преход и теоретично пресметнатите. Сравнението за стойностите за 2^+_2 и 2^+_3 възбудени състояния е качествено добро. От особено значение е фактът, че моделът предсказва силния M1 преход на 2^+_2 до 2^+_1 , което позволява да проследим произходът на M1 силата до структурата на 2^+_1 и 2^+_2 състоянията. Вълновите функции на тези две състояния имат следния вид:

$$\begin{aligned} |2_1^+\rangle &= 0.448 | J_\nu = 0, J_\pi = 2, J = 2 \rangle + 0.819 | J_\nu = 2, J_\pi = 0, J = 2 \rangle + \cdots \\ |2_2^+\rangle &= 0.813 | J_\nu = 0, J_\pi = 2, J = 2 \rangle - 0.517 | J_\nu = 2, J_\pi = 0, J = 2 \rangle + \cdots \end{aligned}$$

Двете компоненти в тези вълнови функции могат да се разглеждат като протонни и неутронни S и D двойки и те представляват по около 87% и 93% от целите вълнови функции на 2_1^+ и 2_2^+ състоянията. Тези две състояния са почти ортогонални като основната разлика между тях е противоположният знак на доминиращите протонни и неутронни компоненти. Това показва изовекторната природа на вълновата функция на 2_2^+ състоянието, което води до силния $B(M1; 2_2^+ \rightarrow 2_1^+)$ преход. Очевидно дори толкова опростен модел успява да възпроизведе нисколежащото изовекторно състояние в съгласие с експерименталните

Transition	$B(M1; J_i \to J_f)(\mu_{\rm N}^2)$		$B(E2; J_i \to J_f)(e^2 fm^4)$		
$J_i \to J_f$	Experiment	Theory	Experiment	Theory	
$2^+_1 \to 0^+_1$	—	_	$193(24)^{a}$	463	
$4_1^+ \to 2_1^+$	—	_	—	533	
$6_1^+ \to 4_1^+$	—	—	293~(83)	300	
$8^+_1 \to 6^+_1$	—	—	173~(68)	103	
$10^+_1 \to 8^+_1$	—	—	165 (45)	75	
$2_2^+ \to 0_1^+$	—	—	$29 \ (4)^a$	59	
$2^+_2 \rightarrow 2^+_1$	$0.126(16)^a$	0.46	$24 \ (16)^a$	17	
$2^+_3 \rightarrow 0^+_1$	—	—	$20 \ (5)^a$	7	
$2^+_3 \rightarrow 2^+_1$	$0.042(20)^a$	0.0003	290 $(273)^a$	186	

Таблица 2: Сравнение между експерименталните и теоретично определени вероятности за преход на нисколежащите състояния в ядрото ²¹²Ро.

^{*a*}От настоящето изследване.

Останалите експериментални стойности са взети от [7].

наблюдения. Едновременно с това се възпроизвежда и ниската квадруполна колективност, наблюдавана в експерименталните резултати. Тези две предпоставки предполагат, че изовекторната природа е свойство на валентните слоести конфигурации и не е необходима поява на колективност в нискоенергетичните възбуждания.

Моделът обаче не успява да възпроизведе ниската $B(E2; 2_1^+ \to 0_1^+)$ стойност, показваща ниска колективност в структурата на 2_1^+ състоянието. Ниската сила на преход може да бъде обяснена с доминираща неутронна компонента във вълновата функция на 2_1^+ състоянието, но дори при този случай получената експериментална стойност е два пъти по-малка от теоретично пресметнатата. Обяснение за тази разлика може да се търси в избора на ефективните заряди. Както беше споменато по-горе, за нашите пресмятания бяха използвани ефективни заряди, получени от $B(E2; 8_1^+ \to 6_1^+)$ стойности за ²¹⁰Pb и ²¹⁰Po. При този подход B(E2) стойностите от разпадите на 8_1^+ и 6_1^+ състоянията са добре описани за разлика от $B(E2; 2_1^+ \to 0_1^+)$ стойността. Друг вариант е да определим ефективните заряди от измерените $B(E2; 2_1^+ \to 0_1^+)$ стойности за ²¹⁰Pb и ²¹⁰Po. В литературата съществува информация за тях, но в случая за ²¹⁰Po определената стойност не изглежда много достоверна [25].

На фиг. 2 може да се види, че по време на експеримента освен ядрото ²¹²Ро са заселени и други ядра. Едно от тях е ²¹⁰Ро посредством реакцията ²⁰⁸Pb(¹²C,¹⁰Be)²¹⁰Po. Нещо повече, преходът с енергия 1181 keV ($2_1^+ \rightarrow 0_1^+$) има изразена Доплерова форма, което ни мотивира да определим времето на живот на 2_1^+ състояние на ²¹⁰Ро за допълнителни теоретични пресмятания. В рамките на този автореферат няма да навлизаме в детайли относно анализа на данните (описан подробно в глава 5.1. на дисертацията). Накратко ще споменем, че методът за измерване на времето на живот е DSAM, а за описване на формата на линията отново използвахме програмата APCAD. След отчитането на геометрията на експеримента, отклика на детекторите, ограничението на кинематиката на реакцията, зададено от соларните клетки, и историята на захранването на нивото бе определена нова стойност за времето на живот на 2_1^+ състояние на ²¹⁰Ро - $\tau = 2.6(4)$ ps. Това време отговаря на приведената вероятност за преход $B(E2)=136(21)e^2$ fm⁴, която е три пъти по-голяма от приетата до момента.

Използвайки експериментално определените $B(E2; 2_1^+ \to 0_1^+)$ стойности за ²¹⁰Ро (новата стойност) и ²¹⁰Pb [26], бяха направени пресмятания със слоестия модел в едночастично приближение с нови стойности за ефективните заряди - $e_{\nu}=0.83e$ и $e_{\pi}=1.09e$. Резултатите от тези пресмятания са показани на фиг. 8, означени с SM2-gh. Както можеше да се очаква стойността на $B(E2; 2_1^+ \to 0_1^+)$ за ²¹²Ро се описва по-добре, когато ефективните заряди са фиксирани по $B(E2; 2_1^+ \to 0_1^+)$ стойностите за ²¹⁰Ро и ²¹⁰Рb. От друга страна обаче, стойностите за преходите от 8_1^+ и 6_1^+ са занижени с фактор около два пъти спрямо експерименталните. Анализът предполага, че експерименталните стойности на B(E2) преходите не могат да бъдат описани в рамките на слоестия модел в едночастично приближение с използване на различни ефективни заряди.

Фигура 8: Графично представяне на резултатите, получени в рамките на слоестия модел в едночастично приближение (SM1-gh и SM2-gh) за състоянията от основната ивица в ²¹²Po, сравнени с експериментално определените такива (Expt). Дебелината на стрелките е пропорционална на $B(E2; 2_1^+ \to 0_1^+)$ стойностите, които са представени до стрелките в единици $e^2 \text{fm}^4$.

Тук възниква любопитният въпрос дали проблемът в описанието на B(E2) стойностите в ираст ивицата на ²¹²Ро се наблюдава за ядрата ²¹⁰Ро и ²¹⁰Рb. Резултати от теоретичните пресмятания за тази проверка са дадени в таблици 3 и 4. Тук с SM1-gh са дадени стойностите, получени с ефективни заряди, фиксирани по $B(E2; 8_1^+ \to 6_1^+)$ стойностите за ²¹⁰Рb и ²¹⁰Ро, а с SM2-gh са представени резултатите, получени с ефективни заряди, фиксирани по $B(E2; 2_1^+ \to 0_1^+)$ стойностите за същите ядра. Наблюдава се същата зависимост както при ²¹²Ро - при SM1-gh получаваме по-големи стойности $B(E2; 2_1^+ \to 0_1^+)$ от експерименталните, а при SM2-gh по-ниски стойности за $B(E2; 8_1^+ \to 6_1^+)$ и $B(E2; 6_1^+ \to 4_1^+)$. В допълнение бяха направени теоретични пресмятания в рамките на реалистичен слоест модел, за да се провери дали невъзможността за възпроизвеждане на силите на преход възниква от ограниченото моделно пространство, използвано до момента. Резултатите са обозначени като SM в същите таблици. Използваното взаимодействие тук е това на Kuo-Herling [29], а ефективните заряди са същите като при SM2-gh. Резултатите ясно показват, че новите стойности не успяват да опишат много по-добре преходите в ядрата ²¹⁰Pb и ²¹⁰Po. Поради тази причина не може да се очаква, че ядрото ²¹²Po ще бъде добре възпроизведено с допълнителни пресмятания в рамките на слоестия модел в голям базис.

Липсата на добро описание на нисколежащите състояния на ядрата ²¹²Po, ²¹⁰Po и ²¹⁰Pb в рамките на слоестите модели навежда към въпроса дали това е особеност, характерна за самия модел. Този въпрос мотивира допълнителните пресмятания за ядрото ²¹⁰Po посредством квазичастичния фононен модел [28]. В глава 5.3. на дисертационния труд е дадена

Таблица 3: Сравнение на експерименталните свойства на ираст ивицата на ²¹⁰Pb с теоретично пресметнатите. Експерименталните данни за енергиите на възбуждане и B(E2)стойностите са взети от [26].

J_i^{π}	E_x (MeV)		$B(E2; J_i \to J_f)(e^2 fm^4)$				
	Expt	SM	J_f^{π}	Expt	SM1- gh	SM2- gh	SM
2_{1}^{+}	0.800	0.837	0^+_1	105(30)	166	106	109
4_{1}^{+}	1.098	1.099	2^{+}_{1}	360(68)	191	121	144
6^{+}_{1}	1.195	1.191	4_{1}^{+}	158(60)	132	84	101
8_{1}^{+}	1.278	1.234	6_{1}^{+}	53(23)	53	34	43

Таблица 4: Сравнение на експерименталните свойства на ираст ивицата на ²¹⁰Ро с теоретично пресметнатите. Експерименталните данни за енергиите на възбуждане и B(E2)стойностите са взети от [26], освен ако не е посочено друго.

	L .	1 /			· u (
J_i^{π}	E_x (MeV)			$B(E2; J_i \to J_f)(e^2 fm^4)$			
	Expt	SM	J_f^{π}	Expt	SM1- gh	SM2- gh	SM
2_1^+	1.181	1.200	0_{1}^{+}	$136(21)^{a}$	263	137	133
4_1^+	1.427	1.466	2^{+}_{1}	335(14)	302	157	169
6_{1}^{+}	1.473	1.482	4_{1}^{+}	229(7)	209	109	116
8_{1}^{+}	1.557	1.533	6_{1}^{+}	84(3)	84	44	46

^аОт настоящото изследване.

информация за тези теоретични пресмятания. Тук ще представим само крайните резултати, които са дадени в таблица 5. За правилното интерпретиране на тези резултати е важно да се отбележе, че силата на квадруполното изоскаларно остатъчно взаимодействие е избрана да описва експерименталната $B(E2; 2^+_1 \rightarrow 0^+_1)$ стойност на ²¹⁰Po. Така получените стойности за E2 преходите на нивата 4^+_1 , 6^+_1 и 8^+_1 са приблизително 8 пъти по-ниски от експерименталните. Следователно, проблемът, който се наблюдава при описанието на ираст състоянията на ²¹⁰Po в рамките на слоестия модел, възниква под различна форма и при квазичастичния фононен модел.

Таблица 5: Резултати от QPM пресмятанията за нисколежащите състояния на ²¹⁰Po, сравнени с експерименталните данни.

J_i^{π}	Structure ^{<i>a</i>}	J_{f}^{π}	J_f^{π} Transition strength		
ι	%	J	Expt.	QPM	
2^{+}_{1}	$97\%[2_1^+]_{RPA}$	0_{1}^{+}	B(E2) = 136(21)	B(E2) = 135	
4_1^+	$99\%[4_1^+]_{RPA}$	2_{1}^{+}	$B(E2) = 331(13)^{-6}$	B(E2) = 41	
6_{1}^{+}	$99\%[6_1^+]_{RPA}$	4_1^+	$B(E2) {=} 227(5)$ ⁶	B(E2) = 28	
8^+_1	$99\%[8^+_1]_{RPA}$	6_{1}^{+}	B(E2) = 83(3) °	B(E2) = 11	

 ${}^{a}[2_{1}^{+}]_{RPA}$ означава най-ниското 2⁺ възбуждане съгласно приближението на случайните фази и т.н. ${}^{\delta}$ Данните са взети от [7].

^вДанните са взети от [27].

²Данните са взети от [7].

5 Заключение

В настоящето изследване бяха представени резултатите от два експеримента, свързани с нисколежащите квадруполни състояния на ядрото ²¹²Ро. Измерени бяха времената на живот на първите три 2⁺ състояния, използвайки методите DSAM (метод на отслабване на Доплеровото отместване) и RDDSM (метод на откатните ядра). Въз основата на получените M1 сили на преход беше показано, че състоянието 2^+_2 има изовекторна природа. Бихме искали да отбележим, че това е първото идентифицирано нисколежащо изовекторно състояние в масовата област $A \approx 208$. Експерименталните данни показват също слаба квадруполна колективност в 2^+_2 и 2^+_3 състоянията. Тези две възбудени състояния са добре описани в рамките на слоестия модел в едночастично приближение. Тези наблюдения свидетелстват за това, че изовекторната природа на нисколежащите състояния е свойство на валентните едночастични конфигурации.

Получената стойност за $B(E2; 2_1^+ \to 0_1^+)$ показва също много ниска колективност в структурата на първото възбудено 2⁺ състояние на ²¹²Ро. Ниската колективост предполага добро възпроизвеждане на свойствата на ядрото в рамките на слоестия модел. Направените теоретични пресмятания обаче показват, че освен енергиите на нисколежащите възбудени състояния не могат да се обяснят E2 силите на преход на основната ивица $2_1^+ - 4_1^+ - 6_1^+ - 8_1^+$. Този проблем изглежда, че възниква от свойствата на сениорити-2 конфигурациите в ²¹⁰Pb и ²¹⁰Po.

В рамките на това изследване беше получена нова стойност за времето на живот на първото възбудено 2⁺ състояние на ²¹⁰Ро, която отговаря на три пъти по-голяма $B(E2; 2_1^+ \rightarrow 0_1^+)$ стойност от приетата досега. Новата стойност обаче все още е недостатъчно голяма за разрешаването на проблема, възникнал в описанието на ²¹²Ро. Направените теоретични сметки на базата на квазичастичния фононен модел за ²¹⁰Ро показват, че проблемът възникнал в описанието със слоестия модел, се появява по различен начин и в рамките на новите пресмятания. Очевидно достъпните микроскопични модели пропускат съществена част на ядреното взаимодействие, когато се прилагат за описание на най-ниските възбудени състояния в масовата област $A \approx 208$. Тази ситуация изисква допълнителни теоретични изследвания на структурата на нисколежащите състояния на изобарите с A = 210.

Списък на публикации

Публикации, свързани с материала в дисертацията:

<u>D. Kocheva</u>, G. Rainovski, J. Jolie, N. Pietralla, A. Blazhev, R. Altenkirch, S. Ansari, A. Astier, M. Bast, M. Beckers, Th. Braunroth, M. Cappellazzo, A. Dewald, F. Diel, M. Djongolov, C. Fransen, K. Gladnishki, A. Goldkuhle, A. Hennig, V. Karayonchev, J.M. Keatings, E. Klug, Th. Kröll, J. Litzinger, K. Moschner, C. Müller-Gatermann, P. Petkov, M. Scheck, Ph. Scholz, T. Schmidt, P. Spagnoletti, C. Stahl, R. Stegmann, A. Stolz, A. Vogt, N. Warr, V. Werner, D. Wölk, J.C. Zamora, K.O. Zell, V.Yu. Ponomarev and P. Van Isacker; "Low collectivity of the 2⁺₁ state of ²¹²Po" Physical Review C 96, 044305 (2017); (IF 2016 - 3.820, 5-year 3.676)

• <u>D. Kocheva</u>, G. Rainovski, J. Jolie, N. Pietralla, A. Blazhev, A. Astier, R. Altenkirch, S. Ansari, Th. Braunroth, M.L. Cortés, A. Dewald, F. Diel, M. Djongolov, C. Fransen, K. Gladnishki, A. Hennig, V. Karayonchev, J.M. Keatings, E. Kluge, J. Litzinger, C. Müller-Gatermann, P. Petkov, M. Rudigier, M. Scheck, Ph. Scholz, P. Spagnoletti, M. Spieker, C. Stahl, R. Stegmann, M. Stoyanova, P. Thöle, N. Warr, V. Werner, W. Witt, D. Wölk, K.O. Zell, P. Van Isacker and V.Yu. Ponomarev;

"A revised $B(E2; 2_1^+ \rightarrow 0_1^+)$ value in the semi-magic nucleus ²¹⁰Po" European Physical Journal A 53: 175 (2017); (IF 2016 - 2.833, 5-year 2.644)

<u>D. Kocheva</u>, G. Rainovski, J. Jolie, N. Pietralla, C. Stahl, P. Petkov, A. Blazhev, A. Hennig, A. Astier, Th. Braunroth, M.L. Cortés, A. Dewald, M. Djongolov, C. Fransen, K. Gladnishki, V. Karayonchev, J. Litzinger, C. Müller-Gatermann, M. Scheck, Ph. Scholz, R. Stegmann, P. Thöle, V. Werner, W. Witt, D. Wölk, P. Van Isacker;
 "Low-lying isovector 2⁺ valence-shell excitations of ²¹²Po"
 Physical Review C 93, 011303(R) (2016); (IF 2016 - 3.820, 5-year 3.676)

Материали от конференции:

• <u>D. Kocheva</u>, G. Rainovski, J. Jolie, N. Pietralla, A. Blazhev, A. Astier, R. Altenkirch, M. Bast, M. Beckers, S. Ansari, Th. Braunroth, M. Cappellazzo, M.L. Cortés, A. Dewald, F. Diel, M. Djongolov, C. Fransen, K. Gladnishki, A. Goldkuhle, A. Hennig, V. Karayonchev, J.M. Keatings, E. Kluge, Th. Kröll, J. Litzinger, K. Moschner, C. Müller-Gatermann, P. Petkov, M. Rudigier, M. Scheck, P. Spagnoletti, Ph. Scholz, T. Schmidt, M. Spieker, C. Stahl, R. Stegmann, A. Stolz, A. Vogt, M. Stoyanova, P. Thöle, N. Warr, V. Werner, W. Witt, D. Wölk, J.C. Zamora, K.O. Zell, P. Van Isacker and V.Yu. Ponomarev;

"Low collectivity of the first 2⁺ states of ^{210,212}Po" Journal of Physics: Conference Series, to be published; XXII International School on Nuclear Physics and Applications

• <u>D. Kocheva</u>, G. Rainovski, J. Jolie, N. Pietralla, C. Stahl, P. Petkov, A. Blazhev, A. Hennig, A. Astier, Th. Braunroth, L. Cortes, A. Dewald, M. Djongolov, C. Fransen, K. Gladnishki, V. Karayonchev, J. Litzinger, C. Müller-Gatermann, M. Scheck, Ph. Scholz, C. Schramm, P. Thöle, V. Werner, W. Witt, D. Wölk and P. Van Isacker;

"Search for mixed-symmetry states in ²¹²Po"

Journal of Physics: Conference Series 724, 012023 (2016);

XXI International School on Nuclear Physics, Neutron Physics and Applications

• <u>D. Kocheva</u>, R. Stegmann, G. Rainovski, J. Jolie, N. Pietralla, C. Stahl, P. Petkov, A. Blazhev, A. Hennig, C. Bauer, Th. Braunroth, M.P. Carpenter, L. Cortes, A. Dewald, M. Djongolov, C. Fransen, K. Gladnishki, R.V. F. Janssens, V. Karayonchev, M. Lettmann, C.J. Lister, J. Litzinger, Th. Möller, C. Müller-Gatermann, M. Scheck, Ph. Scholz, C. Schramm, P. Thöle, V. Werner, D. Wölk, S. Zhu and P. Van Isacker;

"Search for mixed-symmetry states of nuclei in the vicinity of the double-magic nucleus $^{208}{\rm Pb}$ "

EPJ Web of Conferences **107**, 03004 (2016);

International Conference on Nuclear Structure and Related Topics (NSRT15)

Други публикации на автора:

• T. Konstantinopoulos T. Konstantinopoulos, P. Petkov, A. Goasduff, T. Arici, A. Astier, L. Atanasova, M. Axiotis, D. Bonatsos, P. Detistov, A. Dewald, M. J. Eller, V. Foteinou, A. Gargano, G. Georgiev, K. Gladnishki, A. Gottardo, S. Harissopulos, H. Hess, S. Kaim, <u>*D. Kocheva*</u>, A. Kusoglu, A. Lagoyannis, J. Ljungvall, R. Lutter, I. Matea, B. Melon, T. J. Mertzimekis, A. Nannini, C. M. Petrache, A. Petrovici, G. Provatas, P. Reiter, M. Rocchini, S. Roccia, M. Seidlitz, B. Siebeck, D. Suzuki, N. Warr, H. De Witte and T. Zerrouki; "*Lifetime measurements in* ¹⁰⁰*Ru*"

Physical Review C **95**, 014309 (2017);

• D. Ralet, G. Georgiev, A. E. Stuchbery, E. Clément, A. Lemasson, C. Michelagnoli, M. Rejmund, L. Atanasova, D. L. Balabanski, G. Bocchi, R. Carroll, A. Dewald, J. Dudouet, B. Fornal, G. de France, S. Franchoo, C. Fransen, C. Müller-Gatermann, A. Goasduff, A. Gadea, B. Jacquot, P. R. John, <u>D. Kocheva</u>, T. Konstantinopoulos, A. Korichi, A. Kusoglu, S. M. Lenzi, S. Leoni, J. Ljungvall, R. Lozeva, A. Maj, A. Navin, R. Perez, N. Pietralla, C. Shand, O. Stezowski and D. Yordanov;

"Toward lifetime and g factor measurements of short-lived states in the vicinity of ^{208}Pb "

Physica Scripta **92**, 054004 (2017);

Благодарности

На първо място бих искала да благодаря на научния си ръководител проф. дфзн Георги Райновски за подкрепата, която ми е оказвал през целия период на моето обучение. Благодарна съм му за съветите, които ми е давал при анализирането на експериметалните данни и подробните разяснения около интерпретацията на резултатите. Благодаря му за търпението през годините на съвместната ни работа, за положените усилията и предоставените ми възможности. Благодаря му и за гласуваното доверие.

Бих искала да благодаря на гл. ас. д-р Мартин Джонголов и на доц. д-р Калин Гладнишки за множеството разяснения по различни теми, свързани с ядрената физика, както и за насоките в обработката на експерименталните данни и за дискусиите относно техните резултати.

Благодарна съм на Prof. Dr. Norbert Pietralla за възможността да прекарам няколко месеца в ТУ Дармщат. Благодаря на него, на Dr. Volker Werner и на Dr. Christian Stahl за ценните съвети и идеи около анализа на експерименталните данни. Бих искала да благодаря на Dr. V. Yu. Ponomarev за отделеното време и готовността му да отговори на всичките ми възникнали въпроси по време на престоя ми в ТУ Дармщат. Благодаря му също така за направените теоретични пресмятания в рамките на квазичастичния фононен модел.

Написването на настоящата дисертация и провеждането на част от експериментите, включени в нея, са направени с подкрепата на Германската служба за академичен обмен - DAAD в рамките на договор №РРР57082997, както и със сътрудничеството между Университета в Кьолн и СУ "Св. Климент Охридски". Този дисертационен труд беше частично финансиран от Националния фонд "Научни изследвания" в рамките на договор №ДН 08/23/2016.

Литература

- [1] M. G. Mayer, Phys. Rev. **75**, 1969 (1949).
- [2] O. Haxel; J. H. D. Jensen; H. E. Suess, Phys. Rev. 75, 1766 (1949).
- [3] A. Bohr & B. R. Mottelson, Nuclear structure, Volume II: Nuclear Deformations, Advanced Book Program Reading, Massachusetts (1975).
- [4] F. Iachello and A. Arima, *The interacting boson model*, Cambridge: Cambridge University Press (1987).
- [5] N. Auerbach, I. Talmi, Phys. Lett. **10**, 297 (1964).
- [6] R.M. Lieder et al., Phys. Rev. Lett. 41, 742 (1978); P.A. Baidsen et al., Phys. Rev. Lett. 41, 738 (1978); P. Lemmertz et al., Z. Phys. A 298, 311 (1980).
- [7] E. Browne, Nucl. Data Sheets **104**, 427 (2005).
- [8] N. Pietralla, P. von Brentano, A. F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008).
- [9] K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2366 (2010).
- [10] B. Bengtson *et al.*, Nucl. Phys. A **378**, 1 (1982).
- [11] R. F. Casten, Nuclear Structure from Simple Perspective, Oxford: Oxford University Press (2000).
- [12] Б. Славов, Увод в теоретичната ядрена физика, Университетско издателство "Св. Климент Охридски" (2009).
- [13] F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).
- [14] T. Otsuka *et al.*, Phys. Lett. B **76**, 139 (1978).
- [15] T.K. Alexander and J.S. Forster, Adv. Nucl. Phys. 10, 197 (1978).
- [16] A. Astier, P. Petkov, M.-G. Porquet, D.S. Delion, and P. Schuck, Phys. Rev. Lett. 104, 042701 (2010); A. Astier, P. Petkov, M.-G. Porquet, D.S. Delion, and P. Schuck, Eur. Phys. J. A 46, 165 (2010).
- [17] G. Winter, ZfK. Rossendorf Report ZfK-497, 1983; G. Winter, Nucl. Instrum. Methods 214, 537 (1983).
- [18] C. Stahl, J. Leske, M. Lettmann, N. Pietralla, Comp. Phys. Com. 214, (2017) 174.
- [19] C. Stahl, PhD thesis, TU Darmstadt (2015).
- [20] A.Z. Schwarzschild, E.K. Warburton, Ann. Rev. Nucl. Sci. 18, 265 (1968).
- [21] A. Dewald, S. Harissopulos and P. von Brentano, Z. Phys. A334, 163 (1989).
- [22] G. Böhm, A. Dewald, P. Petkov and P. von Brentano, Nucl. Inst. Meth. A **329**, 248 (1993).
- [23] A.R. Poletti *et al.*, Nucl. Phys. A **473**, 595 (1987).
- [24] J.J. Ressler *et al.*, Phys. Rev. C **69**, 034317 (2004).
- [25] C. Ellegaard *et al.*, Nucl. Phys. A **206**, (1973) 83.

- [26] M. Shamsuzzoha Basunia, Nucl. Data Sheets **121**, 561 (2014).
- [27] O. Häusser *et al.*, Nucl. Phys. A **273**, (1976) 253.
- [28] V. G. Soloviev, Theory of Atomic Nuclei, Quasiparticles and Phonons (IOP, London, 1992)
- [29] G.H. Herling and T.T.S. Kuo, Nucl. Phys. A 181, 113 (1979).