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Abstract

The present study is focused on the properties of the low-lying quadrupole valence-
shell excitations in 212Po, a nucleus that has two valence protons and two valence
neutrons with respect to the double-magic nucleus 208Pb. The lifetimes of the
first three 2+ states of 212Po, were measured by means of in-beam γ-ray spec-
troscopy of excited states which were populated in a 208Pb(12C,8Be)212Po trans-
fer reaction. The lifetimes of the 2+

2 and 2+
3 excited states, candidates for the

one-phonon mixed-symmetry state, were determined by utilizing the Doppler
shift attenuation method. The resulting absolute transition strengths reveal that
the 2+

2 state of 212Po is of predominantly isovector nature. This represents the
first identification of a low-lying isovector state in a nucleus in the vicinity of
the double-magic nucleus 208Pb. The experimental data also reveals a weakened
quadrupole collectivity in these non-yrast states. These experimental results are
in qualitative agreement with a single-j shell model calculation, which, together
with the observed lack of quadrupole collectivity, indicates that the isovector na-
ture of this low-lying state is a generic property originating from the two-fluid
quantum nature of the leading single-particle valence-shell configurations.

The lack of collectivity in the structure of the 2+ isovector state of 212Po is a
peculiar feature which has not been observed so far in isovector states in other
mass regions. To investigate further the degree of quadrupole collectivity in 212Po
the lifetime of the 2+

1 state has been measured by means of the Recoil Distance
Doppler Shift (RDDS) method. The derived absolute B(E2) value of 2.6(3) W.u.
indicates a very low collectivity in the structure of this state. Qualitatively, a low
transition strength from this state can be expected within the framework of the
single-j shell model since its wave function is neutron dominated. However, it
is demonstrated that a consistent description of the properties of the 2+

1 − 4+
1 −

6+
1 − 8+

1 sequence in 212Po cannot be achieved by shell-model calculations. The
problem appears to originate from the properties of the seniority-2 configurations
in 210Pb and 210Po. The question how these seniority-2 states form the low-lying
states of 212Po represents a challenge to the contemporary microscopic models.
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Chapter 1

Introduction

1.1 Theoretical background

Since the discovery of the atomic nucleus (more than 100 years ago) nuclear
physics has been an active field of research. It is known that the nucleus is a very
complex system - a collection of species ranging from hydrogen to the actinides
and displaying a rich variety of phenomena. The atomic nucleus can contain up
to a couple of hundred individual protons and neutrons that orbit relative to one
another and interact via the nuclear and Coulomb forces.

From empirical point of view, the collective nuclei can be classified by using
various experimental observables, e.g., the energies and transition strengths of
excited nuclear states. One well-known example is the excitation energies of the
2+

1 and 4+
1 states in nuclei with even numbers of protons and neutrons. The ratio

of these energies, R4/2 = E(4+
1 )/E(2+

1 ), exhibits a very uniform behaviour as a
function of the distance from the nuclear magic numbers [1]. In other words, this
ratio is an indication for the degree of collectivity in nuclei. The overview of the
R4/2 values across the chart of nuclei is shown in Fig. 1.1.

The complexity of the nuclear system requires the using of different models
along the nuclear chart in order to interpret the different structures observed ex-
perimentally. In order to describe very light nuclei and those that are very near to
closed shells the Shell model [3,4] is widely used. This model is based on a micro-
scopic approach considering individual nucleons. In cases when the nuclei are far
from closed shells, the use of the shell model becomes very difficult since the size
of the matrices in which the residual interaction has to be diagonalized becomes
prohibitively large. At the same time the strong proton-neutron interaction leads
to the onset of collectivity [1,5]. For these nuclei a macroscopic approach is used.
The Liquid-Drop model, in the version of Bohr and Mottelson [5] describes the
nucleus as a quantum fluid, being able to perform vibrations and rotations, while
also changing its overall shape. This model describes the collective motions of the
nucleus. Another approach for describing collective excitations in nuclei is the
Interacting Boson Model which was proposed by F. Iachello and A. Arima [6].
The basic idea is to assume that the valence fermions (protons and neutrons)
couple in pairs and that the low-lying collective excitations of medium and heavy
nuclei can be described in terms of the energies and interactions of such pairs.
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Figure 1.1: Color-coded illustration of the ratio R4/2 = E(4+
1 )/E(2+

1 ) for the
even-even nuclei across the entire nuclear chart [2]. The colors code indicates
the shape and behaviour of the nuclei, i.e. for values from < 2 (green, spherical
shape) to 3.33 (red, well deformed). The onset of deformation when moving from
closed shells to midshell regions is apparent.

A short overview of all of the above-mentioned theoretical models will be given
in the subsequent chapter in order to provide the reader with the theoretical
background used for the interpretation of the experimental results in the present
study. This is achieved by a compilation of the available literature. The original
contribution by the author is summarized in chapters 3, 4, 5 and 6, where the
data analysis and the interpretation of the results are presented.

1.2 Scientific motivation for studying the nu-

cleus 212Po

There are two fundamental concepts for describing the nuclear excitations - single-
particle and collective motions. Understanding nuclear structure in terms of both
regimes is one of the challenges of nuclear physics. In this regard, properties of
open-shell nuclei in the immediate vicinity of double-magic cores are of partic-
ular importance due to the fact that such nuclei can often be understood well
within the framework of the shell models and at the same time their valence par-
ticles can induce the onset of collective behaviour. In this picture the low-energy
excitations of semi-magic nuclei can be considered as single-particle excitations
resulting from the recoupling of the valence protons (or neutrons). Such states will
preserve the ‘seniority’ υ quantum number [7] which is the number of unpaired
nucleons. In open-shell nuclei that are close to shell closures the proton-neutron
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interaction induces collectivity. However, in heavy nuclei where the proton and
neutron energy spaces are well separated, it can be expected that the seniority
features remain preserved to a large extend [8]. With increasing the number of
valence particles the seniority picture breaks down and evolves towards collective
(vibrational) mode.

The nucleus 212Po has two valence protons and two valence neutrons with
respect to the double-magic core 208Pb, thus providing a good testing ground for
studying the beginning of the evolution from single-particle to collective motion
in the mass A ≈ 208 region. In the microscopic approach, the valence neutrons of
212Po are in the 2g9/2 shell and the protons are in the 1h9/2 shell. It was suggested
by Auerbach and Talmi [9] that the yrast sequence 2+

1 − 4+
1 − 6+

1 − 8+
1 of 212Po

follows a seniority-like energy pattern resulting in an isomeric 8+
1 state. The

isomeric nature of the 8+
1 state has later been confirmed in a series of α- and γ-

spectroscopy studies [10]. A complete level scheme of 212Po deduced from a γ−γ
coincidence experiment has been reported later on by Poletti et al. [11] together
with the lifetimes of the 6+

1 and the 8+
1 states. This level scheme has undergone

numerous checks [12] and can be considered as well established. However, the
crucial experimental information, namely the lifetimes of the 2+

1 and the 4+
1 states

is still missing [12].
The properties of nuclei with two valence protons and two valence neutrons

also reflect the two-fluid nature of the nuclear matter. It is expected that such
nuclei will have well pronounced low-lying 2+ isovector states [13]. In these states
the valence protons and neutrons move out of phase. The properties of these
states are sensitive to the isovector part of the proton-neutron interaction. The
low-lying isovector states in open-shell vibrational nuclei are also known as mixed-
symmetry states (MSSs) which are defined in the framework of the Interacting
Boson Model-2 (IBM-2) [6]. It is known that the mixed-symmetry states can
be identified experimentally by their strong isovector M1 decay to the low-lying
fully-symmetric states (FSSs) [15,24]. The best examples of MSSs of stable nuclei
are found in the mass A ≈ 90 region [15]. In the last decade a large number of
MSSs has been identified in the mass A ≈ 130 region, i.e. the mass region around
the double-magic nucleus 132Sn [16–21].

It has to be noted, however, that the MSSs are considered as weakly collective
quadrupole states. It is not clear how they will appear in non-collective nuclei,
i.e. it is not clear how strong is the connection between the isovector nature
of these states and the quadrupole collectivity of the valence-shell configuration.
Apparently, for better understanding for the formation of the low-lying isovector
excitations, more cases of one-phonon MSSs in the vicinity of double-magic nuclei
have to be identified and quantitatively studied. However, nuclei in the vicini-
ties of double-magic shell closures in which the one-phonon 2+

1,ms can be studied
experimentally by conventional methods are scarce. For instance, in the mass re-
gion around the double-magic nucleus 132Sn, all such nuclei are neutron-rich and
radioactive. The situation around the double-magic nucleus 208Pb is somewhat
different because the nucleus 212Po is experimentally accessible via α-transfer re-
actions [22]. Moreover, there are two potential candidates for the one-phonon
MSS in 212Po due to the fact that its 2+

2,3 states decay predominantly to the 2+
1

state [12] as both transitions have a well pronounced M1 character with multi-
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pole mixing ratios of +0.09(3) and +0.65(50) [23], respectively. The only missing
piece of experimental information is the large absolute M1 transition strengths
corresponding to short lifetimes of these levels.

The aim of the present study is to investigate experimentally the properties
of low-lying states of 212Po, both the isoscalar and isovector ones, in order to
illuminate the transition from single-particle (seniority type) to collective mode.
It will be shown that the lifetime of the first isoscalar 2+ state is of particular
importance. Surprisingly, the quadrupole strength in 212Po is even lower than the
one expected from the seniority scheme. This feature appears also in the proper-
ties of the 2+

1,ms of 212Po which in fact is the first isovector state experimentally
identified around 208Pb. The identification of this state and its properties can
be considered as a starting point of the present study. The final results clearly
indicate a peculiarity that cannot be understood in the framework of any of the
contemporary theoretical models. Apparently, the quadrupole collectivity around
208Pb develops in a more strenuous way as the single-particle character remains
more robust than expected.
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Chapter 2

Low-lying quadrupole states in
low collective even-even nuclei

This chapter briefly introduces some of the basic concepts of the models used
for describing the low-lying quadrupole excitations in low-collective even-even
nuclei. In the first section a brief overview of the description of nuclear structure
as resulting from both the single-particle motion and the residual interactions is
given. The basic idea of the seniority scheme is presented. The shell model offers
a good description for nuclei close to magic cores. When adding or removing
nucleons from a closed shell configurations, the valence nucleons in the open shell
start to interact thus leading to collective motion. In these cases the shell model is
not applicable or at least it becomes computationally challenging. For these nuclei
another approach for describing their structure in terms of collective motions is
used. The most relevant concepts here are shortly introduced in section 2.1.3.
The last part of this chapter introduces the Interacting Boson Model (IBM) which
originates from a truncation of the nuclear shell model space and, yet, is capable
of describing collectivity of nuclei across the nuclear chart. One key feature of the
IBM is its algebraic structure that distinguishes it from the previously discussed
models.

2.1 Description of low-lying states in the frame-

work of single-particle and collective models

2.1.1 Shell model

The nuclear shell model was developed independently by Maria Goeppert-Mayer
[3] and Haxel, Jensen, and Suess [4]. Its invention was successful, because it was
capable of explaining the increased stability of nuclei consisting of the particular
magic numbers of protons and neutrons: 2, 8, 20, 28, 50, 82, and 126. The magic
numbers correspond to closed shells in nuclei analogously to the filling of electron
shells in atoms.

The starting point for microscopic description of nuclear structure is the inter-
action between the nucleons. Every nucleon, which is part of an atomic nucleus,
possesses a particular kinetic energy and is subject to interactions with other
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nucleons. This force between nucleons is, for simplicity, assumed to be of 2-body
nature. The Hamiltonian can then be written as

H = T + V =
A∑
i=1

~pi
2

2mi

+
A∑

i>k=1

Vik(~ri − ~rk) (2.1)

The Hamiltonian has 3A position and momentum coordinates and it is ex-
tremely difficult to be solved. The fundamental idea behind the shell model is
that in first approximation the nucleons can be considered as independent par-
ticles moving in a central potential generated by the interaction between them.
The original Hamiltonian is modified by introduction of a 1-body potential Ui(ri):

H =
A∑
i=1

[
~pi

2

2mi

+ Ui(ri)

]
︸ ︷︷ ︸

≡H0

+
A∑

i>k=1

Vik(~ri − ~rk) +
A∑
i=1

Ui(ri)︸ ︷︷ ︸
≡Hres

(2.2)

The contribution of the residual interaction Hres is assumed to be small. In
first approximation it can be neglected, which is a good approximation for nuclei
having one nucleon outside closed shell. The residual interaction gives rise to
collective excitations. Due to the short-range character of the nucleon-nucleon
interaction, the potential U(r) can be approximated by the Harmonic Oscillator
(HO),

U(~r) =
1

2
mω2 ~r2 (2.3)

The energy levels of the harmonic oscillator potential are shown on the left
in Fig. 2.1. This potential leads to magic numbers: 2, 8, 20, 40, 70, 112. We
note that the first three of these indeed reproduce the known magic numbers
but the last ones do not. Therefore, while the harmonic oscillator potential is a
reasonable first order approximation to the effective nuclear potential, it must be
modified to be useful [1].

Let us consider a relatively heavy nucleus with size significantly larger than
the range RN of the nuclear force. Then, as long as a given nucleon lies inside
the nuclear surface at a distance greater than RN , it should be surrounded rather
uniformly by nucleons on all sides. It is thus screened from the asymmetric distri-
bution that appears at the boundary. Therefore, it should experience no net force.
In other words, the central part of the nuclear potential should be approximately
constant. This can be achieved by changing the potential, but this will lead to
more complicated solutions. Another possibility is to add an attractive term in l2

to the harmonic oscillator potential. The effects of an l2 term increase with the
orbital angular momentum of the particle. Therefore high angular momentum
particles feel stronger attractive interaction that lowers their energies. However,
these are the particles that, because of the centrifugal force, spend most of the
time at larger radii. Therefore, the addition of an l2 term is equivalent to a more
constant interior potential. The relation of the single-particle levels produced by
a harmonic oscillator potential, along with an l2 term is presented in the middle
panel of Fig. 2.1. It is shown how the degeneracy of the harmonic oscillator
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Figure 2.1: Qualitative illustration of the orbitals emerging in the nuclear shell
model, adapted from [1].

levels is lifted as high angular momentum levels are brought down in energy [1].
This is an improvement in comparison to the sole harmonic oscillator potential,
but, nevertheless, does not generate the known magic numbers. Coupling the
orbital angular momentum l and the intrinsic nucleon spin s yields another term,
modifying the potential for a nucleon, depending on whether the spin is aligned
parallel or antiparallel to the angular momentum. This leads to lowering of levels
with j = l + s and raising of levels with j = l − s.

The complete single-particle potential then is given by

U(~r) =
1

2
mω2 ~r2 − Vl~l2 − Vls~l · ~s (2.4)

Inserting this central potential into the Hamiltonian H0 of Eq. 2.2 yields the
solution illustrated on the right side of Fig. 2.1. The orbits are labeled with the
quantum numbers nlj , where n is the radial quantum number, l is the orbital
angular momentum, and j is the total angular momentum j = l±1/2. According
to the Pauli principle each orbit can be populated by 2j + 1 nucleons. Filling
the orbits consecutively results in large energetic gaps for nucleon numbers that
correspond to the empirical magic numbers. This reproduces all the known magic
numbers.

As a consequence of the Pauli principle, the 2j + 1 nucleons of a completely
filled orbit couple to total angular momentum J = 0. Hence, the properties of
nuclei are determined by the nucleons in partially filled orbits, so-called valence
nucleons. They are, to first order, subject to the residual interaction, only. Va-
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lence nucleons of the same kind in the same orbit can couple to different angular
momenta J , whose degeneracy is removed by the residual interaction between
them.

An example of such a residual interaction is the δ interaction

Vres = −V0δ(~r1 − ~r2) (2.5)

which models the short-range attractive part of the nuclear force. The δ inter-
action is maximal for two nucleons with maximum spatial overlap of their wave
functions.

Another important interaction in the case of more than one valence nucleon
is the pairing interaction. The motivation is similar to that for the δ interaction
- the pairing interaction is only effective when the particles have high spatial
overlaps. Formally, one can define the pairing interaction by [1]

〈j1j2J |Vpair|j3j4J
′〉 = −G

√
(j1 + 1/2)(j3 + 1/2)δj1j2δj3j4δJ0J0′ (2.6)

where G gives the strength of the interaction. Note that this interaction is at-
tractive and, by definition, only effective for 0+ states of identical nucleons in
equivalent orbits. However, it allows nondiagonal scatterings, 〈j2

10+|Vpair|j2
30+〉,

in which a pair of particles switches to another orbit as a pair. This feature is
critical to the build-up of pairing correlations and the so-called pairing gap in
even-even nuclei.

Both the δ function force and the pairing force are intended to represent the
short-range component of the nuclear interaction. However, the residual interac-
tion also contains a long-range component that is crucial in producing collective
properties and nonspherical nuclei. Usually, this component is presented by the
so-called quadrupole interaction. The combination of the quadrupole and pairing
forces, the so-called pairing plus quadrupole interaction, has been perhaps the
most widely used for modelling the nuclear interactions in heavy nuclei [1].

The popularity of the pairing interaction, or of any other that reproduces the
low energy of J = 0 coupled pairs of nucleons, clearly lies in the fact that all
even-even nuclei have 0+ ground states.

2.1.2 Seniority scheme

The tendency of particles to pair to J = 0+ leads to a scheme in which this
property is explicitly recognized and exploited. Considering jn configuration it
is interesting to see what the smallest value for n is that can produce a given
J value. This value can be denoted by ν and in this case it is clear that there
can be no particles coupled in pairs to J = 0 in the configuration jνJ (J 6= 0).
Otherwise, a jν−2 configuration would have a spin J . Such a state is said to
have seniority ν. From a configuration jν+2 a state of the same spin J can be
made by coupling one pair of particles to J = 0+. For this state is also said to
have seniority ν. Physically, ν is simply the number of unpaired particles in a
state with angular momentum J in the configuration jn. The number of paired
particles is (n − ν) and the number of such pairs is (n − ν)/2. For ν = 0, all
particles are paired and J = 0 [1].
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The seniority concept is very important due to the fact that it leads to many
simple powerful results under quite general conditions. For example, various
interactions and matrix elements can be classified in terms of whether or not
they conserve seniority. Even more important is that many realistic residual
interactions conserve seniority, so this scheme gives reasonable predictions for
actual nuclei. It is impossible within the scope of this thesis to derive all the
results of the seniority scheme without adding an undesirable and unnecessary
complexity. In the following paragraphs the most important properties of the
seniority regime are summarized.
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Figure 2.2: (a) Illustration of the low-lying states following seniority-like energy
pattern; (b) B(E2) values for J → J − 2 transitions for seniority conserving
(upper panel) and seniority changing (bottom panel) transitions as a function of
fractional filling.

The appealing feature of the seniority scheme is that matrix elements between
configurations in jn can be reduced to those in jν . Thus, all energy differences of
seniority ν = 0 and ν = 2 states in the n-particle configuration are identical to
those in the two-particle system and are independent of n. This result is crucial
because its absence would make impossible the application of the shell model in
a simple way to nuclei other than those within one or two nucleons outside the
closed shells.

Considering nuclei with two particles (or holes) of the same type (protons
or neutrons) outside the double-magic core in a single-particle orbit j, the lev-
els up to spin J = 2j − 1 can be denoted by the wave function |j2νJ〉. The
0+ ground state must have the two particles coupled to spin zero, while for the
2+, 4+, . . . , (2j − 1) states the pair is broken. The seniority classification leads
to a distinction between E2 transitions from one of these levels to another: the
2+

1 → 0+
1 transition changes seniority (∆ν = 2) while transitions for higher J
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values are seniority conserving (∆ν = 0). In Fig. 2.2(a) an illustration of the low-
lying states following the seniority pattern is represented. For a short range resid-
ual interaction the spacings between the 0+, 2+, 4+, . . . , (2j − 1) states decrease
monotonically for a jn configuration [26]. The low energy of the (2j−1)→ (2j−3)
transition often makes the (2j − 1) state isomeric [26]. In Fig. 2.2(a) a special
case is illustrated - when the valence nucleons occupy j = 9/2 single-particle or-
bit. This example has been chosen because the lowest-lying orbital in the valence
space above the double-magic core of 208Pb are the 2g9/2 shell (for neutrons) and
1h9/2 shell (for protons). In this case, the 8+ state is expected to be isomer which
is confirmed by the available experimental data [12].

It is interesting to see the behaviour of the B(E2) values for seniority conserv-
ing and seniority nonconserving transitions. The expressions for the E2 transi-
tion matrix elements for both types of transitions are well known in the seniority
scheme and their form can be found in Refs. [1, 26]. However, we choose to
use a more illustrative approach. In Fig. 2.2(b) the calculated B(E2) values for
J → J − 2 transitions for seniority conserving and seniority changing transi-
tions are presented as a function of the fractional filling f = n/(2j + 1) of the
j shell [26]. The B(E2) values of the seniority conserving transitions follow a
parabolic trend with their minimum being at the mid-j shell. The B(E2) values
of the seniority changing transitions follow completely different trend. They reach
their maximum at the mid-j shell [26, 27].

We would like to emphasize that the parabolic trend for seniority conserving
transition is in complete contrast to the behaviour of these transitions in collective
nuclei, where the B(E2; J → J−2; J > 2) values increase to midshell, replicating
the behaviour of the B(E2; 2+

1 → 0+
1 ) value in the seniority scheme. This is

just another example for the importance of the B(E2) strengths as experimental
fingerprints for the onset of nuclear collectivity. Moreover, they give valuable
insights into the nature of nuclear collectivity and its evolution with N and Z.
In almost all even-even nuclei, B(E2) values connecting the lowest yrast states
behave in a simple way, increasing both with increasing valence nucleons and
spin [26].

2.1.3 Collective motion

While the shell model offers a good description of nuclear structure for nuclei
closed to the magic cores, when adding or removing protons/neutrons from a
closed-shell configurations, the particles/holes in the open shell start to interact
and the nuclei start to behave as collective ones. A very figurative idea proposed
by Bohr and Mottelson [5] is based on the assumption that the collective exci-
tations are related to changes of nuclear shape, i.e. the nucleus is considered as
a quantum fluid with a certain shape. Nuclear excitations are described in this
model as arising from changes in the shape (vibrations) or changes of the orien-
tation of non-spherical shape (rotations). Near closed shells, this liquid takes a
spherical shape and can be excited to perform oscillations around this equilibrium
shape (the nucleus vibrates), while in mid-shell regions the shape is deformed,
which allows the nucleus to undergo rotational motion. Within the scope of the
present thesis we are interested only into nuclei near closed shells, i.e. vibrational
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ones.

The nuclear shape is mathematically described by parametrizing the nuclear
surface in terms of an expansion in spherical harmonics Yλµ

R(θ, φ, t) = R0

(
1 +

∞∑
λ=0

λ∑
µ=−λ

αλµ(t)Yλµ(θ, φ)

)
(2.7)

In this expansion the term with λ = 0 can be neglected because it describes a
nucleus that changes its volume while keeping its basic spherical shape [1]. This
is the so-called breathing mode and might occur at very high energies. It can
be neglected for the description of the low-lying collective states of the nucleus.
The value of λ = 1 can also be neglected. It corresponds to a translation of the
nucleus as a whole, which does not affect its internal structure. The higher values
of λ = 2, 3, . . . correspond to quadrupole, octupole, etc. vibrations of the surface.
Quadrupole modes are the lowest order ones at which collective excitations arise.
In a geometrical picture this mode corresponds to oscillations between a flattening
or an elongation of the nucleus followed by restoration of the spherical shape. In
the following lines, the discussion will focus on quadrupole collectivity (λ = 2).
For that class of excitations αλ=2,µ vanish, for odd µ, leaving α22, α20 and α2−2

as unique collective degrees of freedom.

The Hamiltonian describing a quadrupole vibration can be written as [1]

H = T + V =
1

2
B
∑
µ

∣∣∣∣dα2µ

dt

∣∣∣∣2 +
1

2
C
∑
µ

|α2µ|2 (2.8)

where B plays the role of a mass parameter and C is a restoring force. Differen-
tiating H, which is a constant of motion, gives

B
d2α2µ

dt2
+ Cα2µ = 0. (2.9)

This is identical in form to the differential equation of motion of a harmonic
oscillator and hence we obtain the solution that (each of the) α2µ undergoes
oscillations with frequency

ω =
√
C/B (2.10)

and vibrational energy ~ω. Therefore, analogously to oscillations in rigid bod-
ies, excitations of a vibrational nucleus can be deemed as phonons with angular
momentum λ and parity (−1)λ, i.e. quadrupole phonons with positive parity
Jπ = 2+ in the case of quadrupole excitations λ = 2.

The allowed angular momenta for coupling of N phonons can be derived in
the m-scheme [1]. The essential difference between the use of the m-scheme
for phonon excitations and for single-particle excitations is the recognition that
phonons, having integer spins, behave as bosons. Therefore, they are not affected
by the Pauli principle. This means that all combinations of m states are allowed.
This results in a triplet of 0+, 2+, 4+ states for two-phonon excitations and a
quintuplet 0+, 2+, 3+, 4+, 6+ for three-phonon excitations. In practice, the states
of a multi-phonon excitation are not exactly degenerate but form multiplets of

17



close-lying levels due to the residual interaction between the phonons that breaks
the degeneracy of the multiplets, leading to small shifts in energy for the excited
states, depending on the total angular momentum. For two phonon excitations,
the value of R4/2 = E(2+

1 )/E(4+
1 ) is expected to be 2.2, which in fact is observed

in collective nuclei near closed shells.

The excitation and decay of excited nuclear states, i.e. creation and de-
struction of such phonons, can be given in second quantization using quadrupole
phonon creation and destruction operators b† and b, defined via

b|nb〉 =
√
nb|nb − 1〉 (2.11)

b†|nb〉 =
√
nb + 1|nb + 1〉 (2.12)

where |nb〉 is a state with nb bosons. Therefore, excited N -phonon states can
be constructed from the ground state |0〉 by successively applying the creation
operator:

|Nph〉 = (b†)N |0〉. (2.13)

In the next section b will refer to either s or d bosons within the IBM frame-
work.

2.2 Mixed-symmetry states (MSSs)

The quadrupole-collective isovector valence-shell excitations [28], the so-called
mixed-symmetry states (MSSs) [6, 29], represent a unique quantum laboratory
in which the balance and interplay between nuclear collectivity, shell structures,
and isospin degree of freedom can be studied. States with proton-neutron mixed
symmetry have been defined [29] in the framework of the interacting boson model
with proton-neutron degree of freedom (IBM-2).

The Interacting Boson Model (IBM) is rooted in the spherical shell model [30],
which is the fundamental model for describing properties of nuclei, but also has
properties similar, and in many cases identical, to the collective model of Bohr
and Mottelson [5]. Therefore, IBM can be used as an algebraic model describing
low-energy collective excitations of atomic nuclei. The basic idea is, analog to the
vibrational model of Bohr and Mottelson, to couple valence nucleons pairwise to
bosons, thus drastically reducing the number of degrees of freedom.

There are several versions of the IBM depending on their degrees of freedom.
The IBM in its original form (IBM-1 or sd-IBM-1) describes low-lying quadrupole-
collective states with positive parity in medium and heavy even-even nuclei. In the
IBM-1, protons and neutrons are not distinguished. This distinction is introduced
in IBM-2 [29]. The extended IBM-3,4 version includes isospin degrees of freedom
and allows one to treat light nuclei where protons and neutrons occupy the same
single-particle orbits. There are other versions of the IBM - IBMF, sdf-IBM,
sdg-IBM etc., which are outside the scope of the present discussion.

Since the results in the present study are related only to the IBM-2, we will
briefly introduce this version of IBM in order to define its main experimental
features. This presentation follows the book of Iachello and Arima [6] where the
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complete formulation of the IBM can be found.

2.2.1 IBM-2 - the model describing the mixed-symmetry
states

The basic approximating assumption of the IBM is that collective excitations can
be described by bosons. These bosons can be of two types, s and d, having angu-
lar momentum of either L=0~ or L=2~, respectively. Both bosons have positive
parity. The number of bosons is determined by the number of nucleon (or hole)
pairs that are outside of a closed shell. The total number of bosons N in the
IBM is conserved. The algebraic group that preserves this symmetry is U(6). In
addition, for applications to atomic nuclei the chain of algebras have to contain
the subalgebra O(3) since it is needed for states to have a representation of the
rotation group. In other words, O(3) is required for states to have a good an-
gular momentum quantum number. There are three unique reduction chains of
the irreducible representations from U(6) to O(3). These three chains correspond
exactly to the three types of collective excitations as is shown below:

Chain 1−U(5): U(6)⊃U(5)⊃O(5)⊃O(3) − vibrational
Chain 2−SU(3): U(6)⊃SU(3)⊃O(3) − rotational
Chain 3−O(6): U(6)⊃O(6)⊃O(5)⊃O(3) − γ-soft

All possible quadrupole collective excitations are enclosed between these three
limits/symmetries which form the so-called symmetry triangle of IBM, also known
as the Casten triangle [1] (see Fig. 2.3).

Spherical 

Phase

Deformed 

Phase

X(5)

E(5)

U(5) SU(3)

O(6)

Vibrator Rotor

-soft

R4/2=2.2

R4/2=2.5

R4/2=3.3
0+

0+

0+

2+

2+

2+

4+2+0+

4+ 2+

4+

Figure 2.3: The symmetry triangle of IBM. The three limits of the vibrator, rotor
and γ-soft shape (together with their algebraic group) are represented by the
vertices while the legs of the triangle denote the corresponding transition regions.
The typical energy pattern for these three nuclear shapes are represented as well.

The Interacting Boson Model-2 has been introduced as an extension to the
IBM-1, which is necessary in order to account for the proton-neutron interaction.
The proton and neutron bosons are interpreted as correlated pairs of valence
protons and neutrons, respectively. Denoting the bosons by bρ,l,m where ρ is the
proton/neutron label, l is the angular momentum and m its magnetic substate,
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the creation and annihilation operators fulfill the following commutation relations:

[bρ,l,m, b
†
ρ′,l′,m′ ] = δρρ′δll′δmm′

[bρ,l,m, bρ′,l′,m′ ] = [b†ρ,l,m, b
†
ρ′,l′,m′ ] = 0

The IBM-2 Hamiltonian can be written as a sum of three terms

H = Hπ +Hν + Vπν (2.14)

The terms Hπ and Hν are, in fact, the IBM-1 Hamiltonians for protons and neu-
trons, respectively. The difference between the IBM-1 and IBM-2 Hamiltonians
is due to the presence of the third term Vπν which is given by

Vπν =
∑
αβγδ

= wαβγδb
†
π,αbπ,βb

†
ν,γbν,δ + · · · (2.15)

This Vπν conserves separately the number of proton and neutron bosons [6]. The
underlying algebra of the IBM-2 is Uπ(6)×Uν(6) with the subgroup Uπ+ν(6) de-
rived by adding the generators of the Uπ(6) and Uν(6). Analogously to the
reduction chains in IBM-1, one finds such chains for IBM-2, leading to the dy-
namical symmetries Uπ+ν(5), SUπ+ν(3) and Oπ+ν(6). For more details on this
formalism, we refer the reader to [6].

It is important to stress that the new degree of freedom in IBM-2 which arises
from treating the protons and the neutrons separately, leads to a new symmetry
called F -spin symmetry. This symmetry leads to the existence of special classes of
IBM-2 eigenstates, characterized by their symmetry under the pairwise exchange
of an arbitrarily chosen pair of proton and neutron bosons [31, 32]. States that
are totally symmetric under this exchange are called full symmetry states (FSSs)
and they correspond to the complete space of the IBM-1 model with the same
total boson number, where no distinction is made between proton bosons and
neutron bosons. States that contain at least one antisymmetric pair of proton
and neutron bosons are called mixed-symmetry states (MSSs).

The proton-neutron boson symmetry of the IBM-2 wave functions can be
quantified by the F -spin quantum number. The concept of F -spin is formally
equivalent to the isospin, resulting in an assignment of an F -spin of F = 1/2
with projections Fz = +1/2 for proton and Fz = −1/2 for neutron bosons. For
a given nucleus with fixed numbers of proton and neutron bosons, Nπ and Nν ,
respectively, the z-component of the F -spin is a good quantum number. Its
value is Fz = Nπ(+1/2) + Nν(−1/2) = 1/2(Nπ − Nν). The maximal F -spin is
given by Fmax = 1/2(Nπ + Nν). The F -spin quantifies the symmetry of a wave
function under pairwise exchange of proton and neutron boson labels. Basis states
that are characterized by a maximum F -spin quantum number F = Fmax can be
transformed by the successive action of the F -spin raising operator F+ into a state
that consists of proton bosons only. Such a state stays obviously unchanged under
a pairwise exchange of proton and neutron labels because it does not contain any
neutron bosons [15]. Therefore, IBM-2 states with maximum F -spin quantum
number are called Full Symmetry States (FSSs) and have F (FSS) = Fmax. The
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pure proton IBM-2 wave function is identical to the IBM-1 wave function for N
proton bosons. All other basis states with good F -spin quantum numbers F <
Fmax are outside the framework of IBM-1. These states are called proton-neutron
mixed symmetry states (MSSs). The name expresses the fact that these states
contain at least one antisymmetric pair of proton and neutron bosons. In fact, the
F -spin quantum number counts the number of bosons that are symmetric with
respect to pairwise exchange of proton and neutron labels [15]. Up to now only
MSSs with quantum numbers F = Fmax − 1 have ever been observed. Examples
of such states are the 1+ scissors mode [33] or 2+ mixed-symmetry states in
vibrational nuclei [15]. Excitations of lower F -spin have not yet been identified.

Since the present study is focused on the properties of the lowest MSS 2+
1,ms

in the case of U(6) symmetry, i.e. of vibrational nuclei, it is convenient to present
the IBM-2 Hamiltonian in the Q-phonon form. Taking into account that the
residual nucleon-nucleon interaction in the spherical shell model is dominated by
the pairing between identical nucleons, in the boson Hamiltonian we have a term
of the type επn̂dπ + ενn̂dν . In addition, there is a quadrupole-quadrupole interac-
tion between non-identical nucleons which produces a term of the type κQ̂χ

π · Q̂χ
ν ,

where Qχ = [d†× s̃+ s†× d̃](2) +χ[d†× d̃](2). Finally, there is a symmetry energy
which favors states in which protons and neutrons move in phase. Taking into ac-
count all properties mentioned above, the IBM-2 Hamiltonian can be represented
as [6]:

H = E0 + επn̂dπ + ενn̂dν + κQ̂χ
π · Q̂χ

ν + λ′M̂πν (2.16)

where

M̂πν = [s†ν×d†π−s†π×d†ν ](2)·[s̃ν×d̃π−s̃π×d̃ν ](2)−2
∑
k=1,3

[d†ν×d†π](k)·[d̃ν×d̃π](k) (2.17)

is called Majorana operator which accounts for the symmetry energy. This Hamil-
tonian was suggested by Talmi [32].

A simple case of vibrational nucleus with only one proton and one neutron
boson (Nπ = Nν = 1) is presented in Ref. [15]. In this case the system can be
described with the following Hamiltonian:

H = ε(ndπ + ndν ) + λM̂ (2.18)

In this case, the Majorana operator takes the simple form M̂ = [Fmax(Fmax+1)−
F̂ 2]/2. Its structure is such that it acts on MSSs only. The resulting spectrum is
shown in Fig. 2.4.

The Hamiltonian has U(5) symmetry and produces a vibrational spectrum
with a symmetric Jπ = 2+ one-quadrupole phonon state and a symmetric two-
phonon triplet with Jπ = 4+, 2+, 0+ states. The boson wave functions for this
example are displayed in Fig. 2.4 as well. Besides the 2+

1 one-quadrupole phonon
FSS, there is an antisymmetric (with respect to proton-neutron labels) linear
combination of the two configurations with nd = 1, forming the mixed-symmetry
one-quadrupole phonon 2+

1,ms state with F -spin quantum number F = Fmax − 1.
Antisymmetric angular momentum coupling of two (non-identical) d-bosons leads

21



√2

|0〉

Ex

0

1�

2�

3�

0+

2+

0+ 2+ 4+

2+

3+ 1+

�+�

U(5)

Fmax

Fmax -1
MSSs

S�S�

1 (d�S�+S�d�)|0〉

[d�d�]J |0〉

(d�S�-S�d�)
1
√2

|0〉

[d�d�] |0〉
J

Figure 2.4: Spectrum of a schematic IBM-2 Hamiltonian with U(5) symmetry
with boson numbers Nπ = Nν = 1 from Ref. [15].

to mixed-symmetry two-phonon states with odd spin quantum numbers, 3+ and
1+ [25].

The experimental signature for the mixed-symmetric states is a strong M1
decay. This is expected due to the F -vector (∆F = 1) nature of the M1 transition
operator, which is given by [15]

T (M1) =

√
3

4π
[gπLπ + gνLν ]µN (2.19)

=

√
3

4π

[
Nπgπ +Nνgν

N
Ltot + (gπ − gν)

NπNν

N

(
Lπ
Nπ

− Lν
Nν

)]
µN (2.20)

Since the operator Ltot = Lπ +Lν is diagonal in IBM-2 by construction, it cannot
induce transitions between different states. gρ, ρ ∈ {π, ν}, are the effective boson
g-factors and N = Nπ + Nν is the total number of bosons. In Ref. [34] is shown
that the proton-neutron contribution to the matrix elements of any one-body
operator between FSSs is given by:

〈Fmax, α||b†ρ,βbρ,β′||Fmax, α′〉 = NρCαα′ββ′ (2.21)

where α, α′, β, β′ are additional quantum numbers and Nρ is the number of bosons
of given type. Cαα′ββ′ depends on the initial and final states only, hence, it is the
same for Lπ and Lν . Thus, in the limit of F -spin symmetry no M1 transitions
are allowed between FSSs. The situation is completely different in the case of
transitions between MS and FS counterparts which are F -spin allowed. This can
be easily seen from the structure of the wave functions of the one-phonon states
in Fig. 2.4; the M1 matrix element between them is approximately equal to the
difference gπ − gν which is of the order of 1µ2

N . Experimentally the strongest
M1 transition between one-phonon MSS and FSS is observed in 94Mo and its
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size is 0.56µ2
N [15]. In all other cases the M1 transition strength varies between

0.1 and 0.3µ2
N [15]. This comprises the main experimental signature for the one-

phonon 2+
1,ms states - since no other M1 transitions are allowed except for the

one connecting a mixed-symmetry state to a fully-symmetric state, it provides a
unique signature for experimental identification of these states [25].

The F -scalar (∆F = 0) E2 transition operator is given by

T (E2) = eπQ
χπ
π + eνQ

χν
ν , (2.22)

where eπ and eν are effective quadrupole boson charges, couples FSSs and FSSs
or MSSs and MSSs, but is forbidden for transitions between MSSs and FSSs.
Practically, the transition is never completely inhibited, but in most cases it is
strongly suppressed. On the other hand, the 2+

1,ms state is a one-phonon excitation
which should have sizeable collective E2 matrix elements for a transition to the
ground state for both protons and neutrons, but with opposite signs, which might
lead to partial cancellation in the total 〈0+||E2||2+

1,ms〉 matrix element. Thus,
a weakly collective E2 transition strength of a few W.u. for the 2+

1,ms → 0+
1

transition can be expected which constitutes another important experimental
signature for MSSs [15].

From the above mentioned fingerprints it is obvious that the MSSs can be iden-
tified experimentally by their unique decay to the low-lying FSSs. This however,
comprises a major experimental challenge because it requires full spectroscopic
information - the spin and parity quantum numbers of these highly non-yrast
states, their lifetimes, the branching ratios and multipole mixing ratios of their
γ-decays [25].
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Chapter 3

Search for one-phonon 2+
1,ms state

in 212Po

The lifetimes of mixed-symmetry states are usually in the sub-picosecond range
[15]. Therefore, the Doppler-shift attenuation method (DSAM) [35] is the method
of choice for lifetime extraction. In the most commonly used version of this
technique, a level is populated in a nuclear reaction and decays by emission
of γ rays. The projectile partly transfers its linear momentum to the target
nucleus, which is subsequently slowing down due to atomic interactions in the
target material. To ensure that all recoil nuclei are completely stopped, a second
layer, denoted as stopper, is added behind the target material. The stopping time
is usually in the range of 1 ps and thus sets the scale for lifetimes that can be
measured with this technique. The γ rays which are emitted from nuclei recoiling
in matter have energies which are shifted by an amount depending on the initial
velocity of the nuclei. If an excited nucleus decays while recoiling with velocity
v(t), then the energy of the γ rays can be expressed as

Eγ(θ, t) = E0
γ

√
1− β2(t)

1− β(t) cos θ
(3.1)

where β(t) = v(t)/c is the ratio of the ion velocity to the speed of light, E0
γ is

the γ-ray energy emitted by the nucleus at rest and θ is the angle of observation
relative to the recoil direction. To first order in β(t), the equation (3.1) reduces
to the familiar expression

Eγ(θ, t) = E0
γ(1 + β(t) cos θ) (3.2)

which is valid for β(t)� 1. In general, there will be a continuous distribution
of Eγ(t) between E0

γ and E0
γ(1 + β(0) cos θ) corresponding to decays occuring

for ion velocities between 0 and v(0). A schematic diagram of the Doppler shift
attenuation method is presented in Fig. 3.1. The average Doppler shift depends
on the lifetime of the level and on the slowing-down time of the nucleus in the
stopping material. Thus, the lifetime of the level of interest can be determined
from the attenuated Doppler shift if the slowing-down process is known [36].
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Figure 3.1: Schematic diagram of the Doppler shift attenuation method for mea-
suring nuclear lifetimes. When the nucleus (with velocity v, β = v/c) emits γ-ray
in flight, the energy of the γ-ray will be detected as Eγ = E0(1 + β cos θ). When
the nucleus decays at rest (with velocity v = 0), Eγ = E0.

3.1 Experimental set-up

As mentioned in section 1.2. the 2+
2,3 states in 212Po are good candidates for the

one-phonon MSS. The only missing piece of experimental information to verify
this hypothesis is the large absolute M1 transition strengths corresponding to
short lifetimes of these levels. In order to measure the lifetime of the 2+

2 and
2+

3 states in 212Po by means of DSAM an experiment was performed at the FN
Tandem facility of the University of Cologne, Germany. Excited states of 212Po
were populated using the transfer reaction 208Pb(12C,8Be)212Po at a beam energy
of 62 MeV. The beam energy was chosen to be about 2 MeV below the Coulomb
barrier. The target was a self-supporting 10 mg/cm2 thick Pb foil enriched to
99.14% with the isotope 208Pb. The reaction took place in the reaction chamber of
the Cologne plunger device [38]. An array of solar cells was mounted at backward
angles with respect to the beam direction, in order to detect the recoiling light
reaction fragments. The solar cell array consisted of six 10 mm × 10 mm cells
placed at a distance of about 15 mm between their centres and the target. The
array covered an annular space between 116.8◦ and 167.2◦. The γ rays from
the decay of the excited states in 212Po were registered by 12 HPGe detectors
mounted outside the plunger chamber in three rings at an average distance of 12
cm from the target. Five detectors were positioned at 142.3◦ with respect to the
beam direction, another six formed a ring at 35◦ and a single detector was placed
at 0◦. Data were taken in coincidence mode of at least one solar cell and one
HPGe detector (particle-γ) or of at least two HPGe detectors (γ − γ).
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Figure 3.2: Experimental set-up: (left) 6 HPGe detectors at 35◦ and 5 HPGe
detectors at 142◦; (right) The solar cells array for detection of the light reaction
fragments.

3.2 Data analysis

The particle-γ coincidence data were sorted in three matrices depending on the
position of the HPGe detectors. A projection of the particle-γ matrix obtained
with γ-ray detection at 142◦ is shown in Fig. 3.3(a). The γ rays in coincidence
with 8Be (or 2α) are shown in Fig. 3.3(b).

This spectrum is dominated by the 727-keV, the 405-keV and the 223-keV
lines that are the γ-ray transitions depopulating the first three yrast states of
212Po [22]. Besides some contaminants from 211Po, all other γ rays in the spectrum
in Fig. 3.3(b) originate from the decay of excited states of 212Po [11,22,23,39,40].
A partial level scheme of the states in 212Po populated in the present experiment
was constructed on the basis of the γ-γ coincidence data. The level scheme
is shown in Fig. 3.4. Most of these states have been identified in another α-
transfer reaction, namely 208Pb(18O,14C) [22]. In addition, we have populated
two non-yrast 2+ states at excitation energies of 1512 keV and of 1679 keV,
respectively [23]. These two states decay predominantly to the 2+

1 state via the
785-keV and the 952-keV transitions, respectively [12]. Both transitions have
a well pronounced M1 character with multipole mixing ratios of +0.09(3) and
+0.65(50) [23], respectively. That makes these two 2+ states potential candidates
for the one-phonon MSS in 212Po.

Both the 785-keV and 952-keV lines show well-pronounced Doppler shapes
which allows for lifetimes determination of the 2+

2 and 2+
3 states in 212Po by

means of the Doppler Shift Attenuation Method (DSAM).

In the DSAM, the nuclear lifetime is measured relative to the slowing down
time for heavy ions in stopping materials where the changing velocity of the ions
has to be accounted as well. The stopping powers for heavy ions can be separated
into three velocity regions: (1) low velocity (β = v/c < 0.5%) where nuclear
stopping is the dominant mechanism for energy loss, (2) medium velocity (β ∼
0.5− 2%) where the competition between nuclear and electronic stopping powers
is almost equal, and (3) high velocity (β > 2%) where the electronic stopping
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Figure 3.3: (a) The projection of the particle-γ matrix at 142◦. The dashed lines
represent regions in the particle spectrum found to be in coincidence with the γ
rays from the indicated nuclei. (b) The γ-ray spectrum in coincidence with the
group of particles indicated as ”212Po” in panel (a).
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Figure 3.4: Partial level scheme of 212Po obtained in the present work. The energy
of the transitions are given in keV. The candidates for the one-phonon MSS are
placed on the right of the yrast states

powers are dominating [35]. According to kinematics calculations performed with
the program package LISE++ [41,42], the velocity of the ions of 212Po is expected
to be ∼ 1%, which was experimentally confirmed by measuring the maximum
Doppler shift of the γ-ray. In this case, as it was mentioned above the stopping
power for 212Po ions results from two distinct processes: electronic and nuclear.
The electronic stopping is characterized by long-range collisions, small energy
transfers, and small deflections. The nuclear stopping is characterized by large
energy losses and abrupt changes in direction. The widely used treatment of the
slowing-down process for medium velocity ions is proposed by Lindhard, Scharff,
and Schiøtt (LSS) [43]. In the LSS theory, the stopping power is defined in terms
of energy ε and range ρ parameters. Thus

dε

dρ
= fe(

dε

dρ
)e + fn(

dε

dρ
)n (3.3)

with

ε = E
aM2

Z1Z2e2(M1 +M2)
(3.4)

and

ρ = RNM24πa2E
M1

(M1 +M2)2
(3.5)

where E is the ion kinetic energy, Z1 and M1 are the atomic number and mass
of the moving ion, Z2 and M2 are the atomic number and mass of the stopping
material, N is the number of stopping atoms/cm3, R is the ion range, and the

screening parameter a = 0.8853a0(Z
2/3
1 +Z

2/3
2 )−1/2. The factors fe and fn in equa-

tion (3.3) have been inserted as parameters to be determined from experiment.
In Ref. [44–46] has been shown that the nuclear stopping power is overestimated
in the LSS theory by a factor of 30%.

In order to describe the slowing down of the recoiling 212Po we have performed
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two parallel analyses of the line shapes; in the first analysis, labelled here as
Analysis I, we used a Monte Carlo (MC) simulation by means of a modified [47,48]
version of the program DESASTOP [49]. The electronic stopping powers used
were obtained from the Northcliffe and Schilling tables [50] with corrections for
the atomic structure of the medium, as discussed in Ref. [51]. An empirical
reduction of fn = 0.7 was applied [52] to downscale the nuclear stopping powers
predicted by the LSS theory [43].

The second analysis, labelled as Analysis II, uses an integrated software named
APCAD (Analysis Program for Continuous Angle DSAM) [53, 54]. In APCAD,
the slowing down process is simulated by the program StopSim which is based
on GEANT4 [55]. Here the electronic stopping process is modelled in the same
way as in Analysis I. On the other hand, APCAD adopts a simpler approach to
modelling the nuclear stopping process, as compared with the completely discrete
approach used in Analysis I. In Analysis II the angular straggling due to nuclear
collisions is modelled discretely by means of MC simulation while the correspond-
ing energy loss is considered to emerge as a result from a continuous process as the
nuclear stopping powers were taken from SRIM2013 [56] and reduced by 30%. In
Fig. 3.5 the electronic and nuclear stopping powers for 212Po ions in lead material
are shown, used in the program APCAD.
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Figure 3.5: The electronic (blue line) and nuclear (dashed red line) stopping
powers for 212Po ions slowing down in 208Pb as a function of the ions energy.

The output of the simulation is a set of ion velocity histories. They contain
the velocity vectors of individual ions in an ensemble, sampled in time steps.
The velocity histories start at the time of excitation of the ions (t = 0) and
end at the time when the ions come to rest inside the target or leave it. These
velocity histories are the starting point for calculating Doppler-broadened γ-ray
line-shapes. The temporal evolution of the velocity distribution for an ensemble
of 212Po ions provided by StopSim is shown in Fig. 3.6.

The particle-γ coincidence requirement leads to restrictions on the reaction
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Figure 3.6: Temporal evolution of the velocity distribution for ions of 212Po which
are excited at t = 0 and slowed-down in a target of 10 mg/cm2 lead foil.

kinematics imposed by the solar cell array (see Fig. 3.7). In terms of the sim-
ulation this means that only events for which the projectile-like product of an
excitation reaction leaves the target are recorded. Therefore, ion velocity histo-
ries can be selected according to the kinematics of reaction products ejected from
the target and hit the defined particle detector [54].

212Po*
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Figure 3.7: Schematic representation of the cases when the detector system fires
coincidences between the light reaction fragments (detected by the solar cells) and
γ rays coming from the excited states of the nucleus 212Po (registered by HPGe
detectors). Both cones are imaginary and represent the solid angles at which the
reaction fragments should move in order to be detected taking into account the
annular space covered by the solar cell array.

All available information on detector and set-up geometry, excitation and
slowing-down process is contained into pre-calculated distribution functions that
describe theoretical Doppler-shift distributions as a function of the time of γ-ray
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emission. These distributions are stored in the form of the so-called stopping
matrices. The stopping matrices contain the information of what distribution
of Doppler-shifts would be registered by the γ-ray detectors at certain angles, if
γ-ray emission would occur at a certain time after the excitation reaction. These
distributions are discretized in both Doppler-shift and time. The discretization
in time is given by the time steps of the velocity histories. The stopping matri-
ces are calculated for each angular detector ring (see Fig. 3.8). Sums of these
stopping matrices over time, weighted by decay functions, yield the distributions
of Doppler-shifts occurring for individual γ-ray transitions. From both these dis-
tributions and given unshifted γ-ray energies, spectra of γ-rays hitting the γ-ray
detectors are obtained. Taking into account the detector response functions and
the feeding histories of the levels of interest the final calculated spectra with the
Doppler-broadened line-shapes could be compared to experimental data [54].

In our analysis the feeding histories of the levels of interest were determined
from the γ − γ coincidence data. Slow feeding was introduced and fitted in
the analyses only if the analysed transitions were observed in coincidence with
transitions from higher-lying states. Otherwise, only very fast feeding which can
be associated with direct population of the levels of interest, was considered.

Before extracting the lifetimes of the states of interest we verified our analyses
with a previously known lifetime. For example, the lifetime of the 6− state at
2016 keV is known to be 0.49(16) ps [22]. Under the above assumptions both
analyses produced similar results. The lifetime of this level derived in our analysis
from the line-shape of the 661.3-keV transition, with a feeding history similar to
the one used in Ref. [22] (58% fast feeding and 42% slow feeding), is 0.50(4) ps
in Analysis I and 0.46(4) ps in Analysis II, respectively. This consistency allowed
us to conclude that we can determine the lifetimes of the 2+

2,3 states correctly.

The lifetimes of the 2+
2 state at 1512 keV and the 2+

3 state at 1679 keV
were extracted from the line shapes of the 785-keV and the 952-keV transitions,
respectively. Both of these transitions are in coincidence with the 727-keV (2+

1 →
0+

1 ) transition, only (see Fig. 3.4). Therefore only fast feeding (τfeeding ≤ 10 fs)
was introduced in the fits of their line shapes. In Fig. 3.9, examples of these fits
obtained with the program APCAD are presented. The final lifetimes together
with the available spectroscopic information and the resulting transition strengths
are summarized in Table 3.1. The quoted uncertainties of the results for the
lifetimes from Analysis I and II include statistical uncertainties from the line-
shape fits and 10% uncertainty in the nuclear and electronic stopping powers.
The adopted values are taken as average between the results from both analyses.

3.3 Interpretation of the results

As seen from Table 3.1, the 2+
2 state in 212Po at 1512-keV excitation energy decays

with a sizeable M1 transition to the 2+
1 state. This allows us to conclude that the

2+
2 state in 212Po has isovector nature and as such it can be considered, at least,

as a fragment of the one-phonon MSS. This represents the first identification of
a low-lying isovector state in a nucleus from the mass region around the double-
magic nucleus 208Pb. On the other hand, all observed B(E2) strengths in the
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Figure 3.8: Stopping matrices for the angular bins centered at 35◦ (upper panel)
and 142◦ (bottom panel). It shows the intensity distribution of relative Doppler-
shifts that would be registered in this angular bins as a function of time of the γ-
ray emissions after the excitation reaction. E ′ is the Doppler-shifted γ-ray energy
and E denotes the transition energy that is observed if the emission occurs at
rest.
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Figure 3.9: An example of line-shape fits of the 785.3-keV (2+
2 → 2+

1 )(a) and
the 952.1-keV (2+

3 → 2+
1 ) (b) transitions obtained with the program APCAD.

The dashed (blue) lines show the background and the fit regions. The solid (red)
line represents the total fit. The 785-keV line is fitted simultaneously with the
780.4-keV line which originates from the decay of the 7(+) state in 212Po at the
excitation energy of 3155 keV (τ = 0.12(6)ps) [22]. The dotted lines (green and
grass green) represent the individual contributions of 785-keV and 780-keV lines
to the total fit. The vertical dash-dotted lines show the position of the unshifted
peaks.
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Table 3.1: Properties of the 2+
2 and the 2+

3 states in 212Po and γ-ray transitions
originating from their decays. Given are the excitation energies (Elevel), the spin
and parity quantum numbers of the initial levels (Jπi ) and of the final levels (Jπf ),
the relative intensities (Iγ), and the multipole mixing ratios (δ), the lifetimes of
the states, and the absolute transition strengths. For calculating the absolute
transition strengths the total electron conversion coefficient α from Ref. [12] were
used.
Elevel Jπi Jπf Iγ

a δb τ (ps) τ (ps) τ (ps) Transition strength c

(keV) % An. I An. II Adopted Jπi → Jπf
1512 2+2 0+1 26(3) 0.73(7) 0.69(6) 0.71(9) B(E2) = 29(4)

2+1 100(1) 0.09(3) B(M1) = 0.126(16)
B(E2) = 24(16)

1679 2+3 0+1 35(8) 0.82(4) 0.74(7) 0.78(8) B(E2) = 20(5)
2+1 100(19) 0.65(50) B(M1) = 0.042(20)

B(E2) = 290(273)

aFrom Ref. [12].
bFrom Ref. [11]
cB(E2) values are given in e2fm4 (1 W.u.= 75.09 e2fm4), and the B(M1) values are given in

µ2
N. In the calculations for the transitions strengths vanishing α-decay branches were assumed.

decays of the 2+
2 and the 2+

3 states are low (cf. Table 3.1). These observations
indicate a lack of quadrupole collectivity in these low-energy states and question
the applicability of the phonon picture in 212Po. In order to check this hypothesis
shell model calculations have been done. They are based on the simplest possible
description of the low-lying states of 212Po which can be pursued in the framework
of an empirical single-j shell model approximation.

3.3.1 Single-j shell model calculations with effective charges
fixed to the B(E2; 8+1 → 6+1 ) values in 210Po and 210Pb

The nucleus 212Po has two neutrons and two protons outside the 208Pb core. In
this approach, the two neutrons are in the 2g9/2 shell and the protons are in
the 1h9/2 shell. The interactions between the valence particles as well as the
effective electromagnetic operators are derived from the experimental data for
the neighbouring nuclei as follows. In the single-j shell approximation, 210Pb
corresponds to two neutrons in the 2g9/2 orbital while 210Po corresponds to two
protons in the 1h9/2 orbital with respect to the 208Pb core. Both these nuclei
display seniority spectra [57] that are consistent with the single-shell hypothesis.
The energy spectrum of 210Bi determines the interaction between a neutron in
the 2g9/2 orbital and a proton in the 1h9/2 orbital, and the entire multiplet from
0− to 9− is known [57]. In the single-j shell approximation, the basis states of
212Po can be written as |(2g9/2)2Jν , (h9/2)2Jπ; J〉 ≡ |JνJπJ〉. The proton-proton
and neutron-neutron interactions are diagonal in this basis which is mixed by the
proton-neutron interaction,
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〈JνJπJ |Ĥ|J ′νJ ′πJ〉 = (V Jν
νν + V Jπ

ππ )δJνJ ′
ν
δJπJ ′

π
+

+ 4
√

(2Jν + 1)(2Jπ + 1)(2J ′ν + 1)(2J ′π + 1)×

×
∑
R

(2R + 1)

 jν jπ Jπ Jν
R jπ J jν

jν jπ J ′π J ′ν

V R
πν ,

where V Jν
νν , V Jπ

ππ , and V R
πν are the neutron-neutron, proton-proton and proton-

neutron interaction matrix elements, respectively; the symbol in square brackets is
a 12j coefficient of the second kind [58]. In the single-j shell approximation theM1
operator is entirely determined from the magnetic moments of the ground states
of 209Pb and 209Bi, µ(9/2+

1 ) = −1.4735(16)µN and µ(9/2−1 ) = +4.1103(5)µN [59].
This yields a neutron g factor of gν = −0.33 and a proton g factor of gπ =
+0.91. In 210Pb and 210Po there are several known B(E2) values for transitions
between the lowest-lying yrast states. Amongst them, the lowest B(E2) values
are observed for the 8+

1 → 6+
1 transitions, 53(23)e2fm4 in 210Pb and 84(3)e2fm4

in 210Po. Consequently, it can be assumed that the 8+
1 and 6+

1 states of these
nuclei have pure two-nucleon configurations. Therefore, the effective proton and
neutron charges in the E2 transition operator were determined from the measured
B(E2; 8+

1 → 6+
1 ) values for 210Pb and 210Po. This approach yields the effective

charges eν = 1.04 and eπ = 1.52.

In Fig. 3.10 the calculated level energies are compared with the experimental
ones. It can be seen that the yrast states of 212Po form a seniority-like excitation
pattern. The energies for most of the states, except for 10+

1 and 2+
3 , are well

reproduced. Apparently, the 10+
1 and 2+

3 states have more complicated structures
outside the considered model space. For the rest of the states, the calculated
spectrum closely follows the experimentally-observed energy pattern with some
energy compression. The latter leads to deviations between the observed and the
calculated level energies in the range between 37 keV (for the 2+

1 ) to 150 keV
(for the 2+

2 ). The 2+
2 state is correctly reproduced to appear slightly higher than

the 8+
1 state. We stress that this description is not a fit to the data on 212Po but

rather, an extrapolation of the data on neighbouring nuclides to 212Po based on
the hypothesis of a structure dominated by the 1h9/2 and 2g9/2 orbitals.

The comparison between the experimental transition strengths and the cal-
culated ones for decays of the low-lying states in 212Po is shown in Table 3.2.
The agreement between the experimental and the calculated transitions strengths
for the non-yrast states is good, qualitatively, even for the 2+

3 state. More im-
portantly, the model predicts that the 2+

2 state decays with a very strong M1
transition to the 2+

1 state - in qualitative agreement with the observed sizeable
value of 0.126(16)µ2

N. Thus, the model accounts qualitatively well for the main
isovector features of the low-lying states in 212Po which allows to trace the origin
of the M1 strength to the structure of the 2+

1 and 2+
2 states. The wave functions

of these states can be presented as follow:
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Figure 3.10: Comparison of experimental low-lying excited states in 212Po (a)
with the calculated ones (b). The energies of the levels are given in keV.

Table 3.2: Comparison between the experimental and the calculated transition
strengths for decays of the low-lying states in 212Po.

Transition B(M1; Ji → Jf )(µ
2
N) B(E2; Ji → Jf )(e

2fm4)
Ji → Jf Experiment Theory Experiment Theory
2+

1 → 0+
1 – – – 463

4+
1 → 2+

1 – – – 533
6+

1 → 4+
1 – – 293 (83)a 300

8+
1 → 6+

1 – – 173 (68)a 103
10+

1 → 8+
1 – – 165 (45)a 75

2+
2 → 0+

1 – – 29 (4)b 59
2+

2 → 2+
1 0.126(16)b 0.46 24 (16)b 17

2+
3 → 0+

1 – – 20 (5)b 7
2+

3 → 2+
1 0.042(20)b 0.0003 290 (273)b 186

aFrom data given in Ref. [12].
bFrom the present work (cf. Tab. 3.1).
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|2+
1 〉 = 0.448|Jν = 0, Jπ = 2, J = 2〉+ 0.819|Jν = 2, Jπ = 0, J = 2〉+ · · ·
|2+

2 〉 = 0.813|Jν = 0, Jπ = 2, J = 2〉 − 0.517|Jν = 2, Jπ = 0, J = 2〉+ · · ·

The two components in the wave functions, which can be thought of as pro-
ton and neutron S and D pairs, exhaust about 87% and 93% of the total wave
functions of the 2+

1 and the 2+
2 states, respectively. These two states are almost

orthogonal as the main difference between these wave functions is the opposite
sign of the dominant proton and neutron components. This reveals the isovec-
tor nature of the wave function of the 2+

2 state which leads to the enhanced
B(M1; 2+

2 → 2+
1 ) value. Apparently, even extremely simple shell models, like the

one used here, tend to generate low-lying isovector state in agreement with the
experimental observation. At the same time both the experimental results and
the theoretical calculation indicate an anomalously low quadrupole collectivity in
212Po. Together these two facts suggest that the isovector nature is a property
of the valence shell configuration and does not need collectivity to appear at low
excitation energy.
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Chapter 4

Lifetime measurement of the first
2+ state in 212Po

In the previous chapter it has been shown that a phenomenological single-j shell
model accounts very well for the properties of low-lying states, including the off-
yrast 2+ isovector state. Both experimental results and theoretical calculations
hint for a low quadrupole collectivity in 212Po. This raises the question whether
the properties of the 2+

1 − 4+
1 − 6+

1 − 8+
1 yrast sequence in 212Po, which forms

a seniority-like energy pattern (see Tab. 3.2), are entirely consistent with the
seniority scheme. To address these questions experimental information on the
absolute B(E2) strengths for the 2+

1 → 0+
1 and the 4+

1 → 2+
1 transitions is

needed. This has motivated us to perform an experiment especially designed to
measure the lifetime of the 2+

1 state of 212Po.

The lifetime of the 2+
1 state of 212Po was measured by utilizing the Recoil

Distance Doppler Shift (RDDS) method [35, 60]. The RDDS method is a well
known technique suitable for determination of lifetimes of excited nuclear states
in the picosecond region. In this method, excited nuclei from a nuclear reaction
in a thin target recoil into vacuum with velocity v. The nuclei travel a distance
D in vacuum and are stopped in a thick stopper. The excited nuclei that survive
the time of flight (t = D/v) in vacuum decay in the stopper material. They emit
γ rays that are unshifted in energy. The γ rays from nuclei decaying in flight are
Doppler shifted (see Fig. 4.1). The method uses the timing information contained
in the splitting of the intensity of a depopulating γ-ray transition into components
characterized by different Doppler shifts. The evolution of the intensities of the
two components as a function of the target-to-stopper distance is sensitive to the
lifetime τ of the depopulated level. For extracting the lifetime of the decaying
state the velocity v of the recoiling nuclei needs to be known. This velocity can
be either calculated by using the reaction kinematics or directly measured from
the observed Doppler shift.

Although there are no difficulties in principle in the conventional analysis of
RDDS data even in the case when a level is fed by many transitions from higher
lying levels, it has turned out that in practice the conventional analysis can
become cumbersome because it consists of fitting all observed decay curves by a
set of coupled differential equations. Therefore, a transparent method for analysis
of RDDS data has been proposed by A. Dewald [61], the so-called Differential
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Figure 4.1: Schematic diagram of the recoil distance method of measuring nuclear
lifetimes. The Doppler-shifted γ-rays can be resolved from the unshifted ones.
When the nucleus (with velocity v, β = v/c) emits γ-ray in flight, the energy of
the γ-ray will be detected as Eγ = E0(1 + β cos θ). When the nucleus decays at
rest (with velocity v = 0), Eγ = E0.

Decay Curve Method (DDCM). In this method the set of coupled differential
equations is replaced for each individual level by a single first order differential
equations of quantities, which can be directly obtained from the experimental
data, if all feeders for the level of interest are known. A full description of the
method can be found in Refs. [61, 62]. For completeness the model is briefly
described below.

level Li

levels Lh

levels Lj

A

B

C

Figure 4.2: Schematic decay scheme

In Fig. 4.2 is shown an arbitrary situation for a decay and feeding pattern
of a level Li which lifetime has to be determined. The level of interest Li is fed
from higher lying levels Lh by several transitions and is depopulated by other
transitions to lower lying levels Lj. The time evolution of the population ni(t) of
the state Li is given by the well known differential equation:
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d

dt
ni(t) = −λini(t) +

∑
h

λhnh(t)bhi (4.1)

where λa denotes the decay constant of a level and bhi are the branching ratios
of the levels Lh with respect to the level Li.

Integrating the equation 4.1 and taking into account the relation λi = 1
τi

one
obtains the basic relation for determination of the lifetimes:

τi(t) =
−Ni(t) +

∑
h bhiNh(t)

d
dt
Ni(t)

(4.2)

The quantities Ni(t) and Nh(t) are directly proportional to the counts in the
shifted and unshifted peaks observed in the RDDS data which allows the lifetime,
in a singles measurement, to be directly extracted from the spectra if all feeders
are known. In the cases of coincidence measurements, the feeding pattern can
be simplified by gating on one feeding transition only. Then problems like the
unobserved feeding which can create systematic errors in the determination of
lifetimes are eliminated.

The quantities in a 2-fold-coincidence experiment are the number of events of
two simultaneously observed transitions which are emitted from the same nucleus.
The measured intensities of these transitions in coincidence X and Y , where
transition Y occurs first, are indicated by {Y,X}. The coincidence intensities
{Y,X} can be written as:

{Y ∞0 , X∞0 } = {Y t
0 , X

t
0}+ {Y t

0 , X
∞
t }+ {Y ∞t , X t

0}+ {Y ∞t , X∞t } (4.3)

Due to the time order of the transitions the intensity {Y ∞t , X t
0} is equal to zero

since a nucleus at rest after the transition Y ∞t can not decay in flight afterwards.

In order the formulas for determining of the lifetimes from the observed co-
incidence intensities to be derived the notation in Fig. 4.2 is used. The decay
which is observed to measure the lifetime of the level i is transition A. The first
transition we will discuss is in a coincidence with a higher lying transition C that
feeds the level i via one intermediate transition.

τi(t) =
{Ct

0, A
∞
t } − {Ct

0, B
∞
t }

{Ct0,A∞
0 }

{Ct0,B∞
0 }

d
dt
{Ct

0, B
t
0}

(4.4)

In RDDS experiments the time scale is represented by the flight time t of the
excited nuclei from the target to the stopper. The quantity X t

0 in the RDDS
case is given by the intensity of the shifted component of a transition for which
the intuitive notation Xsh will be used. Analogously X∞t corresponds to the
unshifted components Xun, and for X∞0 the notation Xus is used. For clarity, the
equation 4.4 can be rewritten in terms of shifted and unshifted components with
the following formula:

τi(t) =
{Csh, Aun} − {Csh, Bun}{Csh,Aus}{Csh,Bus}

d
dt
{Csh, Bsh}

(4.5)

41



The most important special case is that of a coincidence with a direct feeder,
i.e. transition B in Fig. 4.2. In this case the lifetime of the state of interest Li is
determined from:

τi(t) =
{Bsh, Aun}
d
dt
{Bsh, Ash}

. (4.6)

The last equation can be easily rewritten in terms of the velocity of the re-
coiling nuclei as follows:

τi(x) =
{Bsh, Aun}

v d
dx
{Bsh, Ash}

. (4.7)

This lifetime formula clearly shows the simplicity of the application of the
DDCM for coincidence measurement.

4.1 Experimental set-up

For measuring the lifetime of the 2+
1 state in 212Po by means of RDDS method

an experiment was performed at the FN Tandem facility at the University of
Cologne, Germany. The excited states of 212Po were populated using the same
α-transfer reaction from the previous experiment, namely 208Pb(12C,8Be)212Po.
The target consisted of a 0.6 mg/cm2 thin layer of Pb (enriched up to 99.14%
with the isotope 208Pb) evaporated on a 2 mg/cm2 thick Au backing foil and was
placed with the Au facing the beam. The beam energy of 64 MeV was chosen in
such a way that the energy at which the reaction takes place after the Au backing
to be about ∼ 62 MeV. The reaction was induced in the reaction chamber of the
Cologne coincidence plunger device [38]. The stopper was a self-supporting 2
mg/cm2 thick Au foil. Data were taken at six plunger distances: 25 µm, 35 µm,
43 µm, 55 µm, 70 µm and 100 µm.

For detecting the light reaction fragments six solar cells (10 mm × 10 mm)
were used. The array of solar cells was mounted in the plunger chamber at
backward angles with respect to the beam axis, covering an angular range between
116.8◦ and 167.2◦. The solar cells were placed at a distance of about 15 mm
between their centres and the target. The γ rays from the decay of the excited
states of 212Po were registered by 11 HPGe detectors mounted outside the plunger
chamber in two rings at on average distance of 12 cm from the target. Five
detectors were positioned at backward angles (142.3◦ with respect to the beam
axis) and the other six detectors were placed at forward angles (45◦ with respect
to the beam axis). Data were taken in coincidence mode of at least one solar cell
and one HPGe detector (particle-γ) or of at least two HPGe detectors (γ-γ).

4.2 Data analysis

The particle-γ coincidence data were sorted in twelve matrices depending on the
positions of the HPGe detectors and the plunger distances. A projection of the
particle-γ matrix obtained with γ-ray detection at 142◦ at plunger distance of
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43 µm is shown in Fig. 4.3(a) as an example. The γ rays in coincidence with
the group of particles indicated as ”212Po & 200Tl” in Fig. 4.3(a) are shown in
Fig. 4.3(b). This spectrum is dominated by transitions from excited states of
200Tl which is produced by the 197Au(12C,2αn) transfer reaction in the backing
or in the stopper. However, the 727-, 405-, and 223-keV lines which are the γ-
ray transitions depopulating the first three yrast states of 212Po [11, 22] are also
clearly visible. Moreover, it is also visible from Fig. 4.4 that the 727-keV transition
between the 2+

1 state in 212Po and its ground state, has a well pronounced shifted
component which evolves as a function of plunger distance.

The evolution of the intensities of the shifted (Ish) and the unshifted (Iun)
components of the 727-keV line with respect to the change of the plunger distances
is sensitive to the lifetime of the 2+

1 state in 212Po. The RDDS data for this
transition was analysed by utilizing DDCM [61,62]. As mentioned in the previous
section the standard application of DDCM requires the Ish and Iun components
(for each distance) to be measured from spectra in coincidence with the Doppler-
shifted components of transitions that feed directly the excited state of interest.
Then the lifetime τi of the level of interest for the i-th target-to-stopper distance
depends on Ish and Iun in the simple way [61,62]:

τi(x) =
Iun(x)

〈v〉 d
dx
Ish(x)

(4.8)

as here the derivative of the Doppler shifted intensities as a function of the target-
to-stopper distance, d

dx
Ish, is determined by a piecewise polynomial fit to the

measured intensities Ish. For the present experiment this would require analysing
particle−γ−γ data which is not possible at the acquired level of statistics. How-
ever, the particular feeding pattern of the 2+

1 state in 212Po in the used transfer
reaction allows this problem to be circumvented as described below.

Figure 4.4 shows particle-gated γ-ray spectra of the 2+
1 → 0+

1 transition ob-
served at backward (a) and forward (b) angles at three different distances. The
spectra are normalized with respect to the total number of counts in the particle
gate (cf. Fig. 4.3(a)) and, as a result, the total number of counts in the 727-
keV transition (the sum of the shifted and the unshifted components) remains
constant for all distances. At the same time, the increase of the intensity of the
shifted component Ish with increasing target-to-stopper distance is also apparent.
However, the presented particle-gated spectra are, in fact, γ-ray singles spectra.
Such spectra, in principal, contain only information for the so called effective life-
time of the 2+

1 state of 212Po which aggregates the mean lifetime of the 2+
1 state

and the partial lifetimes of all states decaying to it. Therefore, the intensities of
the Ish and Iun components of the 727-keV transition derived from the spectra
in Fig. 4.4 have to be corrected for the effects of the transitions feeding the 2+

1

state. Due to the reaction mechanism it is justified to consider that slow feeding
contributions to the effective lifetimes of excited states of 212Po can originate only
from discrete decays of higher-lying states, as suggested in Ref. [22]. The partial
level scheme representing the known transitions directly populating the 2+

1 state
of 212Po [11,22] is shown in Fig. 4.5.

Amongst them only the 405-keV 4+
1 → 2+

1 transition can be clearly observed
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Figure 4.3: (a) The projection of the particle-γ matrix obtained at plunger dis-
tance D=43 µm by coincident detection of charged particles in the solar-cell array
and a γ ray at a polar angle Θγ = 142◦. The marked ranges represent parts of
the particle spectrum found to be in coincidence with the γ rays from the indi-
cated nuclei. (b) The γ-ray spectrum in coincidence with the group of particles
indicated as ”212Po & 200Tl” in panel (a).
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Figure 4.4: Unshifted and shifted components of the 727-keV (2+
1 → 0+

1 ) transi-
tion observed at backward angles (a) and at forward angles (b) for three different
target-to-stopper distances: 25 µm, 43 µm, 100 µm. The dot-dashed lines (blue)
represent the positions of the Doppler-shifted peak; the dashed lines (red) rep-
resent the unshifted peak positions. In the upper corners are shown the peaks
of the 405-keV (4+

1 → 2+
1 ) transition at the same detector angle and distance as

those for the 2+
1 → 0+

1 transition.

45



727

405

785
952

810

0

2

4 1132

21512

21679
3 1537

Figure 4.5: Partial level scheme of 212Po showing the excited states which feed
the first excited 2+ state directly. The thicknesses of the arrows are proportional
to the observed γ-ray intensities.

and its intensity can unambigously be determined in our data (cf. Fig. 4.3(b)).
The reason for this is that the particle gated spectra in Fig. 4.3 is dominated by
γ rays from 200Tl produced by a transfer reaction in the backing or in the plunger
stopper. In order to estimate the relative contributions of the feeding transitions
(cf. Fig. 4.5) to the intensity of the 727-keV (2+

1 → 0+
1 ) transition we have used

the data from our DSAM experiment in the previous chapter. In that experiment
the same transfer reaction was utilized and as a result the same relative population
of excited states of 212Po could be expected. Indeed, the data from the previous
experiment show that the intensity ratio Iγ(405 keV; 4+

1 → 2+
1 )/Iγ(727 keV; 2+

1 →
0+

1 ) is 55.0(8)/100.0(5) while 54(9)/100(4) is measured in the present experiment.
This consistency allows to conclude that the intensities for the other transition
have to be identical for both experiments as well. Therefore, we have estimated
that 75% of the feeding of the 2+

1 state comes from the states depicted in Fig.
4.5 as follows: 55% from the decay of the 4+

1 state at 1132 keV excitation energy,
4% from the decay of the 2+

2 state at 1512 keV, 6% from the decay of the 2+
3

state at 1679 keV, and 10% from the decay of the 3−1 state at 1537 keV. Since no
other γ rays that feed the 2+

1 state are observed up to date, the remaining 25%
of the intensity of the 727-keV transition is considered to originate from a direct
population of the 2+

1 state.

In the previous chapter it was shown that the lifetimes of the 2+
2,3 states of

212Po are below 1 ps which means that they contribute only to the fast feeding of
the 2+

1 state. The lifetime of the 3− state at 1537 keV is not known and cannot
be determined from any of the available data sets. However, an E1 strength of
about 1 mW.u. for the 810-keV transition (cf. Fig. 4.5) leads to a τ(3−1 ) ≈ 0.5
ps. Therefore, in order to simplify the discussion at this moment we assume that
its lifetime is sufficiently short so that it decays only in flight. Nevertheless, the
influence of the feeding from the 3− state on the τ(2+

1 ) will be discussed later.
Under the above assumption the only essential feeder to the 2+

1 state remains
the 405-keV transition which depopulates the 4+

1 state in 212Po (cf. Fig. 4.5).
It is expected that the 4+

1 state has a long lifetime of about 140 ps, or longer
(see Table 3.2). Indeed, as it can be seen from the insets in Fig. 4.4 the 405-
keV transition has only a stopped component for all plunger distances, i.e. the

46



decay of the 4+
1 state contributes only to the stopped component of the 727-

keV transition. Hence, that extra contribution to the stopped component of the
727-keV transition has to be eliminated. In our analysis this was achieved by
subtracting the efficiency-corrected number of counts in the 405-keV line out
of the efficiency-corrected number of counts in the stopped component of the
727-keV transition (cf. Fig. 4.4). Under the considerations above, all other
transitions feeding the 2+

1 state (cf. Fig. 4.5) comes from short-lived states (τ <
0.5 ps). Hence, the intensities of the shifted components of the 727-keV transition
being directly determined from the particle-gated spectra are not affected by the
feeding transitions and consequently are related only to the lifetime of the 2+

1

state of 212Po.

It needs to be stressed that both Iun and Ish as extracted by the procedure
described above are natively bound to the fast feedings of the 2+

1 state, including
one directly from the reaction. In this respect, they can be considered as effec-
tively derived from γ-ray spectra in coincidence with the shifted components of
all transitions directly feeding the state of interest. Therefore, they can be used
to determine the lifetime of the 2+

1 state with the DDCM, i.e. they can be used
directly in Eq. (4.8).

To proceed with the DDCM analysis the mean velocity of the recoiling nuclei
〈v〉 has to be known. In order to make a realistic estimate of the mean velocity of
the recoiling nuclei we have calculated the average drifting time of the recoiling
nuclei in vacuum. The calculations are based on Monte Carlo simulations which
account for all relevant stopping and straggling processes of the beam and the
recoiling nuclei in the target, the experimental geometry, and the restrictions
on the reaction kinematics imposed by the solar cell array. The simulations were
carried out with the program APCAD [53,54]. The approach used for the slowing-
down process was described in details in the previous chapter. Taking into account
the reaction conditions such as beam energy, backing and target thickness, and
restrictions on the reaction kinematics imposed by the solar cells array, the ion
drift times for all target-to-stopper distances were calculated from the simulated
distributions and averaged over distances. An example of these distributions, for
distance – 43µm, is given in Fig. 4.6. The mean drift time for this target-to-
stopper distance is simulated to be tdrift=19.0(27) ps, which translates to a mean
velocity of 〈v〉 =0.75(11)%c. The averaged over all distances value for the mean
velocity of the recoiling nuclei is calculated to be 〈v〉 =0.75(10)%c.

Parallel with the procedure described above, a second analysis for the velocity
of the ions has been done. The value for the velocity was experimentally deter-
mined from the centroids of the shifted and the unshifted components of 727-keV
transition using

Eγ = E0(1 + β cos θ) (4.9)

where Eγ is the energy of the centroid of the shifted component (when the nucleus
decays in flight), E0 is the centroid of the unshifted component (when the nucleus
decays at rest), the velocity of the ion is β = v/c, and θ is the γ-detector angle
with respect to the beam direction. The velocity of the recoiling nuclei was
extracted to be 〈v〉 =0.72(5)%c, which is in agreement with the value calculated
from the simulated ion drift time. For the final value for the velocity of the
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Figure 4.6: The simulated distribution of the drift time of the recoiling nuclei,
for distance – 43µm. The value of tdrift=19.0(27) ps is used in order the mean
velocity of the ions to be calculated.

nuclei we adopted the experimentally determined one since it is expected that
that procedure is more accurate.

The DDCM analysis for the lifetime of the 2+
1 state of 212Po with 〈v〉=0.72(5)%c

and intensities (Iun and Ish) extracted with the procedure described above is pre-
sented in Fig. 4.7 for forward and backward angles. The analysis results in a
weighted mean value for the lifetime of the 2+

1 state of 21.8(19) ps.

It has to be noted that the only assumption in the derivation of the above
result which is not directly supported by experimental observations, is that the
feeding from the 3−1 state is fast (cf. Fig. 4.5). To investigate the influence
of this feeding to the lifetime of the 2+

1 state further, we have also considered
the alternative limit, i.e. we assume that the feeding from the 3−1 state is very
slow and contributes only to the unshifted component of the 727-keV transition.
In this case, besides the intensity of the 405-keV transition, the intensity of the
unshifted component of the 727-keV transition has to be reduced by additional
10% which accounts for the intensity of the 810-keV transition (3−1 → 2+

1 , cf.
Fig. 4.5). This alternative approach reduces the deduced lifetime of the 2+

1 to
19.2(18) ps. For the final value for the lifetime of the 2+

1 state we conservatively
adopt the average value between the two limits which is:

τ(2+
1 , Ex = 727 keV) = 20.5(26) ps. (4.10)

Taking into account the known electron conversion coefficient for the 2+
1 → 0+

1

transition of 212Po [11] and the α-branching ratio of 0.033 [22], the newly derived
lifetime of the 2+

1 state translates to absolute transition strength B(E2; 2+
1 →

0+
1 ) = 193(24) e2fm4 = 2.6(3) Wu.
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4.3 Interpretation of the results - unexpected

low collectivity of the 2+
1 state

The measured B(E2; 2+
1 → 0+

1 ) value of 2.6(3) W.u. indicates an extremely low
collectivity in the structure of the 2+

1 state of 212Po. Qualitatively, a low absolute
transition strength from the 2+

1 state in 212Po can be expected in the framework
of a single-j shell model since the wave function of the 2+

1 state is expected to
be neutron dominated as one can see in the previous chapter (3.3.1). Even in
this case (see Tab. 3.2), the experimental value is also more than a factor of 2
smaller than the calculated one in the framework of a single-j shell model. Then a
plausible explanation for the discrepancy between the predicted and the measured
B(E2; 2+

1 → 0+
1 ) values could be sought in the choice of effective charges. In our

calculations the effective proton and neutron charges in the E2 transition operator
were determined from the measured B(E2; 8+

1 → 6+
1 ) values for 210Pb and 210Po.

As it can be seen, the B(E2) values for the decays of the 8+
1 and the 6+

1 states
are reasonably well reproduced by the model approach while the experimental
B(E2; 2+

1 → 0+
1 ) value is significantly overestimated (cf. Tab. 3.2).

Another approach is to determine the effective charges from the measured
B(E2; 2+

1 → 0+
1 ) values for 210Pb and 210Po. There is information in the literature

for these transition probabilities [57] but in the case for 210Po, it is not very
reliable. We will address this issue in the next chapter where the B(E2; 2+

1 → 0+
1 )

value for 210Po is revised and continue with these theoretical calculations after
determining the new B(E2; 2+

1 → 0+
1 ) value for 210Po.
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Chapter 5

The revised B(E2; 2+
1 → 0+

1 ) value

in the nucleus 210Po

The adopted B(E2; 2+
1 → 0+

1 ) value for 210Po is determined from the cross-section
for populating the 2+

1 state in 210Po measured in inelastic scattering of deuterons
and protons [63]. Large-scale shell-model studies on 210Po using realistic interac-
tions [64,65] reproduce well the energies of the yrast 2+, 4+, 6+, and 8+ levels as
can be seen in Fig. 5.1. The calculated wave functions in the framework of shell
model show that the dominant component of the yrast states is the (πh9/2)2 con-
figuration, corroborating the expectation that they belong to the seniority υ = 2
multiplet. The E2 strengths for the transitions between the 4+, 6+ and 8+ states
are also almost perfectly reproduced (cf. Table VII in Ref. [64] and Table III in
Ref. [65]). However, in both studies [64,65] the B(E2; 2+

1 → 0+
1 ) value is overesti-

mated by a factor of six. Such a significant discrepancy between the shell-model
calculations and the data is an indication for either an inaccurate experimental
value [64, 65] or for deficiencies in the model, as suggested in Ref. [65]. This has
motivated us to re-evaluate the lifetime of the 2+

1 state of 210Po using data from
our DSAM experiment, namely the one obtained with the 208Pb(12C,10Be)210Po
reaction. The set-up of this experiment is described in details in chapter 3.

5.1 Data analysis

A projection of the particle-γ matrix obtained with γ-ray detection at 142.3◦

is shown in Fig. 5.2(a). The γ rays in coincidence with the group of particles
indicated as ”210Po” in Fig. 5.2(a) are shown in Fig. 5.2(b). This spectrum is
dominated by the 1181-keV and the 245-keV lines which are the γ-ray transitions
depopulating the first two yrast states of 210Po [66] (cf. Fig. 5.1). Besides some
contaminants from 211Po (which are shown in purple), all other γ rays in the
spectrum in Fig. 5.2(b) originate from the decay of excited states in 210Po. More-
over, the 1181-, 2290-, and 1205-keV γ-ray lines show well-pronounced Doppler
shapes which allow us to extract the lifetimes of the 2+

1 , the 2+
2 and the 3−1 states

in 210Po, respectively.

To perform the line-shape analysis we used again the software package AP-
CAD. As it was mentioned above the analysis accounts for the response of the
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Figure 5.1: Experimental and calculated yrast states of 210Po. The calculated
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HPGe detectors, for the experimental geometry, for the restrictions on the reac-
tion kinematics imposed by the solar-cell array and for the feeding history. A
partial level scheme representing the known transitions directly populating the
2+

1 state of 210Po [66] is shown in Fig. 5.3.

The lifetimes of the 2+
2 state at 2290 keV and 3−1 state at 2387 keV were

extracted from the line shapes of the 2290-keV (2+
2 → 0+

1 ) and the 1205-keV
(3−1 → 2+

1 ) transitions in particle-gated spectra, respectively. These spectra are,
in fact, γ-ray singles spectra which, in principal, only contain information for
the effective lifetimes. However, due to the reaction mechanism it is justified
to consider that slow feeding contributions to the effective lifetimes of excited
states of 210Po can originate only from discrete decays of higher-lying states, as
suggested in Ref. [22]. The γ − γ coincidence data show that the 1205-keV
transition is in coincidence with the 1181-keV (2+

1 → 0+
1 ) transition only, while

the 2290-keV (2+
2 → 0+

1 ) transition is not present in the coincidence data. This
observation indicates that the 2+

2 and the 3−1 states are directly populated in the
transfer reaction. Therefore only fast feeding (τfeeding ≤ 10 fs) was introduced in
the fits of their line shapes. The fits are presented in Fig. 5.4 and the extracted
lifetimes are summarized in Table 5.1.

The lifetime of the first excited 2+ state in 210Po was obtained from the line
shape of the 1181-keV (2+

1 → 0+
1 ) transition. Using the γ − γ and the γ-particle

coincidence data from our experiment, and the known branching ratios [66] we
have estimated that 38% of the feeding of the 2+

1 state originates from the states
depicted in Fig. 5.3. The γ − γ and the γ-particle coincidence data were used
to estimate that the contributions of the 245-keV and the 1205-keV transitions
account for 20% and 16%, respectively (cf. Fig. 5.3). We have not observed
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the 1109-keV (2+
2 → 2+

1 ) transition in our data. However, the 2290-keV (2+
2 →

0+
1 ) transition is clearly visible in the γ-particle data (cf. Fig. 5.2(b)) which in

combination with the known branching ratio for the decay of the 2+
2 state [66]

allowed us to estimate that the feeding to the 2+
1 state via the 1109-keV transition

is 2%.

The lifetimes of the 2+
2 and the 3−1 state (cf. Table 5.1) and their influence on

the line shape of the 1181-keV transition were taken into account by the fitting
procedure for the lifetime of the 2+

1 state. A special care was taken to account
for the impact of the 245-keV (4+

1 → 2+
1 ) transition. The 4+

1 state in 210Po is
a long-lived state with lifetime τ = 2.21(10) ns [67]. Consequently, it always
decays at rest in the present experiment. The same is valid for the decays of the
6+

1 and the 8+
1 states (cf. Fig. 5.1). Their lifetimes are even longer than the one

for the 4+
1 state [67]. It has to be noted, that although we have not observed

γ-ray transitions from the decays of the 6+
1 and the 8+

1 states, the population
of these states in the present experiment cannot be excluded and their decay
could potentially contribute to the yield of the 245-keV transition in the cascade
8+

1 → 6+
1 → 4+

1 → 2+
1 (cf. Fig. 5.1). However, due to the isomeric nature of the

4+
1 , the 6+

1 and the 8+
1 states the overall effect of their decays is that the 245-

keV (4+
1 → 2+

1 ) transition is always emitted at rest in the present experiment.
Indeed, as can be seen from the insets in Fig. 5.5 the 245-keV γ-ray line show
no indication of Doppler-shifted components in its shape. Hence, when the 2+

1

state is fed by the 4+
1 → 2+

1 transition it also always decays at rest which gives
extra counts into the fully stopped component of the 1181-keV transition. In
order to extract correctly the lifetime of the first 2+ state of 210Po by means of
the Doppler-shift attenuation method, the contribution of the γ rays coming from
the 245-keV transition to the fully stopped component of the 1181-keV transition
has to be eliminated. The efficiency corrected number of counts in the 245-keV
line are subtracted from the efficiency corrected number of counts in the stopped
component of the 1181-keV transition. That procedure could be automatically
carried out with APCAD by simultaneously fitting the 1181- and the 245-keV
lines.

In addition, the γ − γ coincidence data indicate the presence of 1427-keV
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Figure 5.5: Simultaneous line-shape fits of the 1181-keV (2+
1 → 0+

1 ) transition
observed at forward (a) and at backward (b) angles. The solid (red) line represents
the total fit. The 1181-keV line is fitted simultaneously with the 245-keV (4+

1 →
2+

1 ) line which is always emitted from a stopped nucleus (the insets). The dotted
and dashed lines represent the individual contributions of 1181-keV (red) and
245-keV (purple) lines, respectively, to the total fit. An unidentified stopped
contaminant with Eγ = 1174 keV is taken into account (brown).
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Table 5.1: Properties of the three investigated low-lying states of 210Po and γ-ray
transitions originating from their decays. Denoted are: the excitation energies
(Elevel); the spin and parity of the initial levels (Jπ) and of the final levels (Jπfinal);
the γ-ray energies (Eγ); the relative intensities (Iγ); the multipole mixing ratios
(δ) of the γ-ray transitions; the lifetimes of the states; the absolute transition
strengths. For calculating the absolute transition strengths the total electron
conversion coefficients α from Ref. [12] were used.

Elevel Jπ Jπfinal Eγ Iγ
a δ b τ (ps) Transition strength c

(keV) (keV) % Jπ → Jπfinal

1181 2+
1 0+

1 1181 100 2.6(4) B(E2)=136(21)

2290 2+
2 0+

1 2290 100(2) 0.22(4) B(E2)=53(11)
2+

1 1109 11.2(11) 0.61(31) B(M1)=0.014(7)
B(E2)=60(29)

2387 3−1 0+
1 2387 1.0(3) 0.50(6) B(E3)=70(31)×103

2+
1 1205 100.0(15) B(E1)=0.64(9)×10−3

4+
1 960 11.3(6) B(E1)=0.14(3)×10−3

aFrom Ref. [66].
bFrom Ref. [12].
cB(E1) values are given in e2fm2, B(E2) values are given in e2fm4 (1 W.u.=74.15 e2fm4),

B(E3) value is given in e2fm6, and B(M1) value is given in µ2
N .

transition that connects the 0+
2 state at 2608 keV and the 2+

1 state. However,
this is an extremely weak transition which accounts for less than 1% of the total
population of the 2+

1 state and practically, has no impact on the lifetime of the
2+

1 state. Therefore, besides the influence of the feeding from the 4+
1 , the 2+

2 and
the 3−1 states, only fast feeding (τfeeding ≤ 10 fs) was considered in the fit of the
line shape of 1181-keV transition. Under this assumption, the final value of the
lifetime of the 2+

1 is extracted from a simultaneous line-shape fit of the 1181-keV
transition observed at forward and backward angles (see Fig. 5.5) and presented
in Table 5.1.

5.2 Interpretation of the results

The lifetimes from the present study, together with the available spectroscopic
information and the resulting transition strengths, are summarized in Table 5.1.
The lifetime for the 3−1 state in 210Po is in a good agreement with the estimated
value from Ref. [63]. The lifetime of the 2+

2 state is measured for the first time.
The new value for the 2+

1 state is about a factor of three shorter than the adopted
one [12]. The latter is deduced from a relative cross-section measurement in a
(d, d′) scattering experiment [63]. It has to be noted, however, that the new value
is in a better agreement with the lifetime resulting from the cross-section for
(p, p′) scattering reported in the same study [63]. On the other hand, the value
from the present study is obtained by a model-independent technique and free of
the systematic uncertainties inherent to cross-section analysis.
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The shorter lifetime of the 2+
1 state leads to B(E2; 2+

1 → 0+
1 ) = 1.83(28)

W.u. which is about three times larger than the adopted value [12,63]. However,
this is not sufficient to compensate for the discrepancy between the experimental
value and the estimations within the pure seniority scheme [68] or the shell model
result (cf. Table VII in Ref. [64] and Table III in Ref. [65]) which remain two
times larger than the experimental value. At this point the discrepancy cannot be
explained any longer as being due to experimental uncertainties, the alternative
that it results from the deficiencies of shell model [65] seems more likely. In
Ref. [65] the flaw is attributed to the neglect of ph excitations of the 208Pb core
which strongly influence the Jπ = 2+ states [69].

It is also interesting to check whether the problem is specific for shell models
and whether other theoretical approaches can do better in describing the prop-
erties of low-lying states of 210Po. For this purpose we have performed Quasi-
particle Phonon Model (QPM) calculations [70] for 210Po.

5.3 Quasi-particle Phonon Model (QPM) calcu-

lations for the nucleus 210Po

The Quasi-particle Phonon Model is a microscopic approach extending the quasi-
particle random-phase approximation (QRPA) to a multiphonon basis [71]. In
the QPM, a Hamiltonian of general separable form is treated in a microscopic
multiphonon basis. It is therefore able to describe the anharmonic features of col-
lective modes as well as the multiphonon states. The method can be put in close
correspondence with the proton-neutron interacting boson model. By associating
the microscopic isoscalar and isovector quadrupole phonons with proton-neutron
symmetric and mixed-symmetry quadrupole bosons, respectively, the microscopic
states can be classified, just as in the algebraic model, according to their phonon
content and their symmetry. Due to its flexibility, the method can be imple-
mented numerically for systematic studies of spectroscopic properties throughout
entire regions of vibrational nuclei.

The model incorporates a two-body Hamiltonian, which itself is composed of
several multipole-multipole potentials, allowing the QPM to cover a large configu-
ration space. A short summary of the basic principles, based on [71], is presented
in the following lines [72]. The QPM works with a Hamiltonian of the form

H = Hsp + Vpair + V ph
M + V ph

SM + V pp
M (5.1)

where Hsp is a single-particle Hamiltonian, including a mean-field Wood-Saxon

potential, Vpair is the monopole pairing, V ph
M and V ph

SM include multipole and spin-
multipole interactions of particles and holes, while V pp

M represents the multipole
interaction of particles. The definitions of the potentials can be found in [71].

Based on the particle and hole generation operators a†q and aq, the quasipar-
ticle generation and elimination operators α†q and αq are derived. The separable
Hamiltonian is then used to generate the QRPA phonons via
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Q†λ =
1

2

∑
qq′

{ψλqq′ [α†qα
†
q′ ]λ − ϕ

λ
qq′ [αq′αq]λ̄} (5.2)

The amplitudes ψλqq′ and ϕλqq′ are required to fulfill the conditions

1

2

∑
qq′

[ψλqq′ψ
λ′

qq′ − ϕλqq′ϕλ
′

qq′ ] = δλλ′ (5.3)

The QRPA phonons generated this way allow for expressing the Hamiltonian
of quasiparticle separable form by phonons via

HQPM =
∑
λ

ωλQ
†
λQλ +Hvq (5.4)

where ωλQ is the QRPA phonon energy and Hvq is a phonon coupling part. The
Hamiltonian transformed into the phonon form is diagonalized in a space spanned
by states composed of one, two and three QRPA phonons. The wave functions
are then given by

ΨνJM =
∑
i

RνJ
i Q

†
iJM |0〉+

∑
λ1λ2

P
(νJ)
λ1λ2

[Q†λ1 ⊗Q
†
λ2

]JM |0〉+

+

λ3I∑
λ1λ2

T
(νJ)
λ1λ2λ3

[[Q†λ1 ⊗Q
†
λ2

]I ⊗Q†λ3 ]JM |0〉 (5.5)

They have to be normalized and antisymmetrized according to a particular
procedure outlined in Ref. [71].

In the QPM, one-body transition operators M(σλ) can be separated into two
pieces, leading to the expression

M(σλ) = Mph(σλ) + Msc(σλ) (5.6)

The first term connects states differing by one phonon. It is the leading term and
is responsible for the boson-allowed transitions. It is given by

Mph(σλµ) =
1√

2λ+ 1

∑
qq′

〈q||M(σλ)||q′〉(uqvq′ ± vquq′)(Ψλ
qq′ + Φλ

qq′)(Q
†
λ +Qλ̄)

(5.7)
The second term is the quasiparticle scattering term, which is given by

Msc(σλ) =
1√

2λ+ 1

∑
qq′

〈q||M(σλ)||q′〉(uquq′ ∓ uquq′)[α†q × αq′ ]λ (5.8)

This term links states with the same number of phonons, or with phonon counts
differing by two, and is responsible for the boson-forbidden transitions.

Usually, the problem in the application of the QPM is the determination
of the parameters. The parameters of the Wood-Saxon potential are chosen to
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Table 5.2: Results from the QPM calculations for excitation energies of 210Po in
comparison with the experimental data. The values are given in MeV.

Jπ 2+
1 4+

1 6+
1 8+

1 2+
2 3−

Expt. 1.18 1.43 1.47 1.56 2.29 2.39

QPM 1.10 1.16 1.20 1.21 2.05 2.61

resemble single-particle spectra. The single-particle space includes shells below
and bound states above the Fermi energy, to maximize the energy range available
for investigation of nuclear structure. In general, sets of parameters are always
determined for a particular mass region, and used for calculations of the full
energy range. The details about the calculations which we have done for 210Po
are presented bellow.

In our calculations we have used the Woods-Saxon potential for the mean field
with the parameters presented in Ref. [73]. The single-particle space includes
all shells from the potential bottom to quasibound states with narrow widths.
The single-particle energies of the levels near the Fermi surface are taken from
Ref. [74], where they have been adjusted to reproduce experimental energies of
low-lying levels of four odd-mass neighbouring nuclei to 208Pb in a calculation
with the interactions between quasiparticles and phonons accounted for. The
strength of the monopole pairing interaction for protons in 210Po was adjusted to
the corresponding even/odd mass differences. Because of the large single-particle
model space no effective charges were used for calculating the E1, E2, and E3
transition strengths. The spin-gyromagnetic quenching factor used to calculate
the M1 transition strengths is geff

s = 0.8gfree
s . Excitation modes of even-even

nuclei (both collective and almost two-quasi-particle ones) are treated in the QPM
in terms of phonons. Their excitation energies and internal fermion structure
is obtained from solving Quasi-particle Random-Phase Approximation (QRPA)
equations. The model uses a separable form of the residual interaction. In the
present studies we have used Bohr-Mottelson form factor of the residual force as
a derivative of the mean-field potential. The strength of the isoscalar residual
interaction, the same for all multipoles, has been adjusted to the experimental
B(E2, 2+

1 → 0g.s. ) value in 210Po. The calculations have been performed on the
basis of interacting one- , two-, and three-phonon configurations. The phonons of
the 2+, 3−, 4+, 6+, and 8+ multipolarities have been involved. Complex (two- and
three-phonon) configurations have been built up from all possible combinations of
these phonons. The basis has been truncated above 6 MeV, 8 MeV, and 10 MeV
for one-, two-, and three-phonon components, respectively.

The results from the calculations are presented and compared to the experi-
mental data in Table 5.2 and Table 5.3. The energies of the states of interest are
reasonably well reproduced but the lowest 4+, 6+, and 8+ states are practically
degenerate in energy because of their almost pure π{(1h9/2)2} nature. It has to
be noted that in the chosen approach to fix the strength parameters to the electric
strengths of the 2+

1 state, the result for the energies of the states should be con-
sidered as a prediction of the model. In this respect, the agreement between the
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Table 5.3: Results from the QPM calculations for the low-lying states of 210Po in
comparison with the experimental data.

Jπi Structure a Jπf Transition strength b

% Expt. QPM

2+
1 97%[2+

1 ]RPA 0+
1 B(E2)=136(21) B(E2)=135 c

4+
1 99%[4+

1 ]RPA 2+
1 B(E2)=331(13) d B(E2)=41

6+
1 99%[6+

1 ]RPA 4+
1 B(E2)=227(5) e B(E2)=28

8+
1 99%[8+

1 ]RPA 6+
1 B(E2)=83(3) f B(E2)=11

2+
2 1.2%[2+

1 ]RPA + 0+
1 B(E2)=53(11) B(E2)=3.4

+ 60.5%[2+
1 ⊗ 2+

1 ]RPA + 2+
1 B(M1)=0.014(7) B(M1)=0.006

+ 20.7%[2+
1 ⊗ 4+

1 ]RPA 2+
1 B(E2)=60(29) B(E2)=80

3− 95%[3−1 ]RPA 0+
1 B(E3)=70(31)×103 B(E3)=70×103

2+
1 B(E1)=0.64(9)×10−3 B(E1)=0.83×10−3

4+
1 B(E1)=0.14(3)×10−3 B(E1)=0.27×10−3

a[2+1 ]RPA means the lowest in energy RPA phonon of the multipolarity 2+, etc.
bB(E1) values are given in e2fm2, B(E2) values are given in e2fm4 (1 W.u.=74.15 e2fm4),

B(E3) value is given in e2fm6, and B(M1) value is given in µ2
N .

cThe strength of the quadrupole isoscalar residual interaction has been adjusted to the
experimental B(E2, 2+1 → 0g.s. ) value in 210Po.

dFrom Ref. [12].
eFrom Ref. [67].
fFrom Ref. [12].
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experimental and the calculated energies for the 2+
1 and the 3−1 states allows to

interpret them as one-quadrupole and one-octupole phonon states, respectively.
The energies of the 4+

1 , 6+
1 , and 8+

1 states are somewhat lower in the calculation
than experimentally observed. It should be noted that the energy of the lowest
two-quasiparticle configuration π{(1h9/2)2} is 1.211 MeV with the present quasi-
particle spectrum. In general, the calculation predicts a rather pure one-phonon
nature of the lowest 2+, 4+, 6+ and 8+ states.

The major discrepancy between the QPM calculations and the experimental
data appears in the E2 transition strengths for the cascade 8+

1 → 6+
1 → 4+

1

(cf. Table 5.3). Overall, the model underestimates these values by a factor of
8. Since the corresponding states have a rather pure one-phonon nature, these
transitions are determined by the E2 matrix elements 〈[6+

1 ]RPA||E2||[8+
1 ]RPA〉,

etc. These matrix elements are much smaller as compared to the decays from
two-phonon components 〈[6+

1 ]RPA||E2||[2+
1 ⊗6+

1 ]RPA〉, etc with an exchange of the
[2+

1 ]RPA phonon [75]. Experimental data definitely indicate strong admixture of
two phonon components in the structure of the 4+

1 , 6+
1 , and 8+

1 states which is not
reproduced in the QPM calculations. The problem existing in the shell model
description also appears in a different form in the present QPM calculations,
namely both models are not capable of describing consistently the E2 transition
strengths between the states in the 2+

1 − 4+
1 − 6+

1 − 8+
1 yrast sequence. This may

indicate that the 208Pb core is soft as this softness strongly enhances the 1ph
excitations, or facilitates mixing between the 2qp configurations.
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Chapter 6

Low quadrupole collectivity in
the nucleus 212Po

Before continuing with more theoretical interpretation of our results now we would
like to summarize the most important results about the degree of quadrupole col-
lectivity in 212Po presented up to this point. In section 3.3.1. the theoretical
calculations based on the single-j shell model were presented in order to describe
the properties of the low-lying states in 212Po. It was shown that the energies
for most of the states are well reproduced and the agreement between the experi-
mental and the calculated transition strengths for the 2+

2 and 2+
3 excited states is

qualitatively good. In section 4.3. was shown that the measured B(E2; 2+
1 → 0+

1 )
value in 212Po is more than a factor of 2 smaller than the calculated one in the
framework of the single-j shell model. It was suggested that an explanation
for this discrepancy could be sought in the choice of effective charges. In our
calculations the effective proton and neutron charges in the E2 transition oper-
ator were determined from the measured B(E2; 8+

1 → 6+
1 ) values for 210Pb and

210Po. Another approach is to determine the effective charges from the measured
B(E2; 2+

1 → 0+
1 ) values for 210Pb and 210Po. For this purpose, in the previous

chapter, we revised the B(E2; 2+
1 → 0+

1 ) value for 210Po in order to have more
reliable results. In the following section the results from shell model calculations
for 212Po incorporating the new B(E2; 2+

1 → 0+
1 ) value for 210Po are presented.

6.1 Single-j shell model calculations with effec-

tive charges fixed to the B(E2; 2+
1 → 0+

1 ) val-

ues in 210Po and 210Pb

Using the measured B(E2; 2+
1 → 0+

1 ) values for 210Pb [57] and 210Po single-j shell
model calculations were performed which leads to effective charges of eν=0.83e
and eπ=1.09e. The results from these calculations are presented in Table 6.1 and
in Fig. 6.1, labelled as SM2-gh. Not surprisingly, the calculated B(E2; 2+

1 → 0+
1 )

value for 212Po is closer to our experimental one. It is also worth noting that
such an improvement in the description of the B(E2; 2+

1 → 0+
1 ) value leads to a

perfect agreement between the experimental and the calculated B(E2; 2+
2 → 0+

1 )
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values (cf. Table 6.1). This, however, can be expected since the 2+
2 state is

the isovector partner of the 2+
1 state, i.e. these two states of 212Po have almost

identical wave functions as the main difference between them is a phase factor
(see section 3.3.1). On the other hand, the results for the transition strengths
for the 8+

1 and the 6+
1 (cf. SM2-gh in Fig. 6.1) states are about a factor of two

lower than the experimental ones. This analysis suggests that agreement between
experimental and simple single-j shell model cannot be achieved for the B(E2)
rates by adjusting the effective charges.

Table 6.1: Comparison between the experimental and calculated (see text for
details) properties of the low-lying states in 212Po. The experimental B(E2)
values are from Refs. [12,22], unless otherwise specified.

Jπi Ex (MeV) Jπf B(E2; Ji → Jf )(e
2fm4)

Expt SM-gh Expt SM1-gha SM2-ghb

2+
1 0.727 0.690 0+

1 193(24)c 464 271
4+

1 1.132 1.081 2+
1 — 535 313

6+
1 1.355 1.261 4+

1 293(83) 301 178
8+

1 1.475 1.350 6+
1 173(68) 103 62

2+
2 1.512 1.363 0+

1 29(4)c 59 27
2+

1 24(16)c 17 8

aWith eπ = 1.52e and eν = 1.04e.
bWith eπ = 1.09e and eν = 0.83e.
cFrom the present work.
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Figure 6.1: A graphical representation of the results from Table 6.1 for the single-
j shell model calculations (SM1-gh and SM2-gh) for the low-lying states in 212Po
in comparison with experimental data (Expt). The thickness of the arrows is
proportional to the B(E2; 2+

1 → 0+
1 ) values in e2fm4. The latter are also presented

by the numbers next to the arrows.
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Table 6.2: Comparison between the experimental and calculated (see text for de-
tails) properties of the yrast states in 210Pb. The experimental excitation energies
and B(E2) values are from Ref. [57].

Jπi Ex (MeV) B(E2; Ji → Jf )(e
2fm4)

Expt SM Jπf Expt SM1-gha SM2-ghb SMb

2+
1 0.800 0.837 0+

1 105(30) 166 106 109
4+

1 1.098 1.099 2+
1 360(68) 191 121 144

6+
1 1.195 1.191 4+

1 158(60) 132 84 101
8+

1 1.278 1.234 6+
1 53(23) 53 34 43

aWith eν = 1.04e.
bWith eν = 0.83e.

Since the single-j shell model calculations use an empirical effective interaction
derived from the spectra of 210Pb, 210Bi, and 210Po, it is interesting to check
whether the problem in the description of the E2 transition strengths between
the yrast states of 212Po is also present in 210Pb and 210Po. Results from the
single-j shell-model calculations for these B(E2) values in 210Pb and 210Po are
presented in Tables 6.2 and 6.3 under the columns labelled SM1-gh and SM2-
gh. The labelling of the columns reflects the approach in choosing the effective
charges in the same way as in Table 6.1. The problem is clearly present for both
nuclei – if the effective charges are fixed to the B(E2; 8+

1 → 6+
1 ) values (SM1-gh),

the B(E2; 2+
1 → 0+

1 ) values are overestimated, otherwise, if the effective charges
are fixed to the B(E2; 2+

1 → 0+
1 ) values (SM2-gh), the B(E2; 8+

1 → 6+
1 ) and the

B(E2; 6+
1 → 4+

1 ) values are underestimated. The situation looks slightly better
in 210Po where the B(E2; 4+

1 → 2+
1 ) value is reproduced in SM1-gh calculations

(see Table 6.3) while for 210Pb this value is underestimated by a factor of 2 or
more in both calculations (see Table 6.2). However, the results from the SM1-gh
and SM2-gh clearly demonstrate that whatever the procedure for choosing the
effective charges, the single-j shell model cannot provide a consistent description
of the B(E2) values for the yrast states of 210Pb and 210Po and, consequently,
it cannot be expected that the same model will perform better at describing the
B(E2) values in 212Po (cf. Table 6.1 and Fig. 6.1). Apparently, the key for
understanding the structure of the low-lying yrast states in 212Po which show
unexpectedly low collectivity, lies in the understanding of the behaviour of the
seniority-2 configurations in 210Pb and 210Po.

6.2 Realistic shell model calculations for 210Po

and 210Pb

At this point, it can be speculated that the failure of the single-j shell model in
the cases of 210Po and 210Pb originates from the severely limited model space. To
check this hypothesis we have performed realistic shell-model calculations. The
valence space consists of all neutron orbitals in the 126-184 shell (3s1/2, 2d3/2,
2d5/2, 1g7/2, 1g9/2, 0h11/2 and 0j15/2) and all proton orbitals in the 82-126 shell
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Table 6.3: Comparison between the experimental and calculated (see text for de-
tails) properties of the yrast states in 210Po. The experimental excitation energies
and B(E2) values are from Ref. [57], unless otherwise specified.

Jπi Ex (MeV) B(E2; Ji → Jf )(e
2fm4)

Expt SM Jπf Expt SM1-gha SM2-ghb SMb

2+
1 1.181 1.200 0+

1 136(21)c 263 137 133
4+

1 1.427 1.466 2+
1 335(14) 302 157 169

6+
1 1.473 1.482 4+

1 229(7) 209 109 116
8+

1 1.557 1.533 6+
1 84(3) 84 44 46

aWith eπ = 1.52e.
bWith eπ = 1.09e.
cFrom the present work.

(2p1/2, 2p3/2, 1f5/2, 1f7/2, 0h9/2, and 0i13/2). The Kuo-Herling interaction [76],
which is an effective interaction tailored for this model space, is used to calculate
properties of nuclei with two valence nucleons beyond 208Pb. The single-particle
energies are those given by Warburton and Brown [77]. The effective proton and
neutron charges are the same as in the SM2-gh calculations. The results for both
210Pb and 210Po are presented in Tables 6.2 and 6.3, respectively, as well as in
Fig. 6.2, labelled as SM.
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Figure 6.2: A graphical representation of the results from Tables 6.2 and 6.3
for realistic shell model calculations (SM) for the low-lying states in 210Pb and
210Po in comparison with experimental data (Expt). The thickness of the arrows
is proportional to the B(E2; 2+

1 → 0+
1 ) values in e2fm4. The latter are also

presented by the numbers next to the arrows.

The realistic shell-model (SM) reproduces almost perfectly the energies of the
yrast states in 210Pb and 210Po (cf. Fig. 6.2). However, in both cases the descrip-
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tion of the B(E2) values is only marginally improved with respect to the ones
obtained in the single-j shell-model calculation SM2-gh (cf. Tables 6.2 and 6.3).
In this respect, it cannot be expected that realistic shell-model calculations will
improve the description of the low-lying yrast states in 212Po.
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Chapter 7

Conclusion

In the present study, two experiments on low-energy quadrupole states of the
nucleus 212Po have been presented and their results have been discussed. By using
data from an α-transfer reaction leading to 212Po, we have measured the lifetimes
of its first three 2+ states. This was achieved by utilizing the DSA and RDDS
methods. Both methods have been introduced and the techniques used for the
analysis have been discussed. On the basis of extracted absolute M1 transition
strength, it was shown that the 2+

2 state in 212Po is of predominantly isovector
nature. This represents the first identification of a low-lying isovector
state in a nucleus from the mass A ≈ 208 region. The experimental data
also reveals a weakened quadrupole collectivity in these non-yrast states which
questions the applicability of the phonon picture in 212Po. Instead, the data for
the off-yrast states is qualitatively well described in the framework of a single-j
empirical shell model which represents an extreme single-particle approximation.
All these findings indicate that the isovector nature of low-lying states
is a property of the leading valence single-particle configuration.

In addition, the extracted B(E2; 2+
1 → 0+

1 ) value shows also very low collec-
tivity in the structure of the first excited 2+ state in 212Po. The low collectivity
implies that appropriate theoretical understanding of the structure of the low-
lying yrast states in 212Po could be achieved within the framework of nuclear
shell models. However, the performed shell-model calculations have shown that,
while the energies of the states can be reproduced very well, no consistent de-
scription of the known E2 transition strengths in the yrast 2+

1 − 4+
1 − 6+

1 − 8+
1

sequence could be obtained. This problem appears to originate from the
properties of the seniority-2 configurations in 210Pb and 210Po.

In the course of this work, the lifetime of the 2+
1 in 210Po has been revised but

the newly established value is still not high enough to resolve the puzzle observed
in 212Po. The performed QPM calculations which have been done for the nucleus
210Po show that the problem existing in the shell model description also appears
in a different form in the QPM calculations. It is clear that the available
microscopic models miss an essential part of the nuclear interaction
when applied to describing the simplest excited nuclear states in the
mass A ≈ 208 region. This situation prompts for a more thorough theoretical
investigation of the low-energy structures of A = 210 isobars.
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