

Софийски университет "Св. Климент Охридски" Физически факултет Катедра "Атомна физика"

В търсене на състояния със смесена симетрия в ядрото Ро-212

Атестационен семинар

Докторант: Диана Кочева

Научен ръководител: Проф. дфзн Г. Райновски

Състояния със смесена симетрия?

Еднофононното 2⁺_{1,ms} състояние със смесена симетрия е фундаментално квадруполно-колективно изовекторно възбуждане във валентните слоеве на сферични ядра

Пример: Хармоничен осцилатор, N=2

IBM-2 A. Arima, F. lachello

Състояния със смесена симетрия?

Еднофононното 2⁺_{1,*ms*} състояние със смесена симетрия е фундаментално квадруполно-колективно изовекторно възбуждане във валентните слоеве на сферични ядра

Пример: Хармоничен осцилатор, N=2

IBM-2 A. Arima, F. lachello

Експериментални наблюдаеми, необходими за идентификацията на еднофононно ССС

- Спин и четност: 2+
- Времена на живот: <u>много късоживущи стотици фемтосекунди;</u>
- Отношения на разклонение на γ-разпад: <u>основен канал към 2+</u>
- Отношение на мултиполно смесване: $|\delta| < 1$

Експериментални наблюдаеми, необходими за идентификацията на еднофононно ССС

- Спин и четност: 2+
- Времена на живот: много късоживущи стотици фемтосекунди;
- Отношения на разклонение на γ-разпад: <u>основен канал към 2+</u>
- Отношение на мултиполно смесване: $|\delta| < 1$

 $E_{level} = 1512 \text{ keV}$

$$BR\left(\frac{\lambda(2^+ \to 2^+)}{\lambda(2^+ \to 0^+)}\right) = \frac{100(1)}{26(3)}$$
$$\delta_{E2/M1} = 0.09(3)$$

 $E_{level} = 1679 \text{ keV}$

$$BR\left(\frac{\lambda(2^+ \to 2^+)}{\lambda(2^+ \to 0^+)}\right) = \frac{100(19)}{35(8)}$$

 $\delta_{E2/M1} = 0.65(50)$

Експериментални наблюдаеми, необходими за идентификацията на еднофононно ССС

(1679)

- Спин и четност: 2+
- Времена на живот: <u>много късоживущи стотици фемтосекунди;</u>
- Отношения на разклонение на γ-разпад: <u>основен канал към 2+</u>
- Отношение на мултиполно смесване: $|\delta| < 1$

 $E_{level} = 1512 \text{ keV}$

$$BR\left(\frac{\lambda(2^+ \to 2^+)}{\lambda(2^+ \to 0^+)}\right) = \frac{100(1)}{26(3)}$$
$$\delta_{E2/M1} = 0.09(3)$$

 $E_{level} = 1679 \text{ keV}$

 $BR\left(\frac{\lambda(2^+ \to 2^+)}{\lambda(2^+ \to 0^+)}\right) = \frac{100(19)}{35(8)}$

 $\delta_{E2/M1} = 0.65(50)$

(1512) + 223 1512 ▶ Времената на живот = ?

Тандемен ускорител в Кьолн, Германия

- Реакция ²⁰⁸Pb(¹²C,⁸Be)²¹²Po @ 62 MeV (V_{col} ≈ 64 MeV);
- Мишена 10 mg/cm² ²⁰⁸Pb (99% обогатена);
- Експериментална установка "плънджерно устройство":
 - 5 HpGe детектора на 142.3°, 6 HpGe детектора на 35.0° и 1 HpGe детектор на 0°;
 - пръстен от 6 соларни клетки (10 mm × 10 mm) покриващи ъгъл м/у 116.8° 167.2°;
 - основен тригер ү-а или ү-ү съвпадения;

• Кинематика на_реакцията

 $\langle \upsilon_0(^{212}\text{Po})/c \rangle \approx 0.9$

Експериментална част – line-shape analysis

- Cologne-Sofia DSA analysis (based on <u>P. Petkov</u> et al., NPA 640, 293 (1998); Nucl. Instrum. Methods Phys. Res. A 431, 208 (1999):
 - The slowing-down process Monte Carlo simulation based on the modified DESASTOP
 - Electronic stopping (continuous process) electronic stopping powers from modified Northcliffe&Schilling tables;
 - Nuclear stopping (discrete process) complete Monte-Carlo approach with cross sections based on the formalism of Lindhard, Scharff, Schiøtt reduced by 30%;
- 2) Analysis Program for Continuous Angle DSAM APCAD (C. Stahl, thesis, TU Darmstadt 2015):
 - The slowing-down process Monte Carlo simulation based on GEANT4:
 - Electronic stopping (continuous process) modified Northcliffe&Schilling tables;
 - Nuclear stopping (hybrid treatment) Monte-Carlo approach for angular straggling + continuous energy loss where nuclear stopping powers are taken with 40% reduction from SRIM 2013 (J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instr Meth., B268, 1823 (2010));

Stopping Powers for Po-212 in Pb-208

Експериментална част – line-shape analysis

- Cologne-Sofia DSA analysis (based on <u>P. Petkov</u> et al., NPA 640, 293 (1998); Nucl. Instrum. Methods Phys. Res. A 431, 208 (1999):
 - The slowing-down process Monte Carlo simulation based on the modified DESASTOP
 - Electronic stopping (continuous process) electronic stopping powers from modified Northcliffe&Schilling tables;
 - Nuclear stopping (discrete process) complete Monte-Carlo approach with cross sections based on the formalism of Lindhard, Scharff, Schiøtt reduced by 30%;
- 2) Analysis Program for Continuous Angle DSAM APCAD (<u>C. Stahl</u>, thesis, TU Darmstadt 2015):
 - The slowing-down process Monte Carlo simulation based on GEANT4:
 - Electronic stopping (continuous process) modified Northcliffe&Schilling tables;
 - Nuclear stopping (hybrid treatment) Monte-Carlo approach for angular straggling + continuous energy loss where nuclear stopping powers are taken with 40% reduction from SRIM 2013 (J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instr Meth., B268, 1823 (2010));
- The HpGe detector response and the experimental set-up geometry;
- The kinematics restrictions (particle detector);
- > Feeding history from the γ - γ coincidence data;

Експериментална част – line-shape analysis

- Cologne-Sofia DSA analysis (based on <u>P. Petkov</u> et al., NPA 640, 293 (1998); Nucl. Instrum. Methods Phys. Res. A 431, 208 (1999):
 - The slowing-down process Monte Carlo simulation based on the modified DESASTOP
 - Electronic stopping (continuous process) electronic stopping powers from modified Northcliffe&Schilling tables;
 - Nuclear stopping (discrete process) complete Monte-Carlo approach with cross sections based on the formalism of Lindhard, Scharff, Schiøtt reduced by 30%;

2) Analysis Program for Continuous Angle DSAM – APCAD (<u>C. Stahl</u>, thesis, TU Darmstadt 2015):

- The slowing-down process Monte Carlo simulation based on GEANT4:
 - Electronic stopping (continuous process) modified Northcliffe&Schilling tables;
 - Nuclear stopping (hybrid treatment) Monte-Carlo approach for angular straggling + continuous energy loss where nuclear stopping powers are taken with 40% reduction from SRIM 2013 (J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instr Meth., B268, 1823 (2010));

<u>6⁻ at 2016 keV, E_y=661.3 keV</u>

	A. Astier et al., PRL 104, 042701(2010); EPJ A 46, 165 (2010)	Analysis 1	Analysis 2
τ(ps)	0.49(16)	0.50(4)	0.47(3)

Експериментална част – резултати от двата анализа

E_{level}	J^{π}	J^{π}_{final}	E_{γ}	$I_\gamma^{\ a}$	α^{b}	$\delta^{\ c}$	τ (ps)	τ (ps)	τ (ps)	Transition strength d
(keV)			(keV)				Analysis I	Analysis II	Adopted	
1512	2^{+}_{2}	0^+_1	1512.7	26(3)			0.73(7)	0.69(6)	0.71(9)	B(E2) = 29(4)
		2^{+}_{1}	785.4	100(1)	0.0408(2)	0.09(3)				B(M1) = 0.126(16)
										B(E2) = 24(16)
1679	2^{+}_{3}	0^+_1	1679.7	35(8)			0.82(4)	0.74(7)	0.78(8)	B(E2) = 20(5)
		2_{1}^{+}	952.1	100(19)	0.020(5)	0.65(50)				B(M1) = 0.042(20)
										B(E2) = 290(273)

^aFrom Ref. [23].

^bTotal electron conversion coefficients. From Ref. [23].

^cFrom Ref. [20].

 $^{d}B(E2)$ values are given in $e^{2}fm^{4}$ (1 W.u.= 75.09 $e^{2}fm^{4}$), and the B(M1) values are given in μ_{N}^{2} . In the

calculations for the transitions strengths we have assumed vanishing α -decay branches.

Експериментална част – резултати от двата анализа

E_{level}	J^{π}	J^{π}_{final}	E_{γ}	$I_\gamma^{\ a}$	$lpha$ b	$\delta^{\ c}$	τ (ps)	τ (ps)	τ (ps)	Transition strength d
(keV)			(keV)				Analysis I	Analysis II	Adopted	
1512	2^{+}_{2}	0^+_1	1512.7	26(3)			0.73(7)	0.69(6)	0.71(9)	B(E2) = 29(4)
		2^{+}_{1}	785.4	100(1)	0.0408(2)	0.09(3)			(B(M1) = 0.126(16)
										B(E2) = 24(16)
1679	2^{+}_{3}	0^+_1	1679.7	35(8)			0.82(4)	0.74(7)	0.78(8)	B(E2) = 20(5)
		2_{1}^{+}	952.1	100(19)	0.020(5)	0.65(50)			\langle	B(M1) = 0.042(20)
										B(E2) = 290(273)

^aFrom Ref. [23].

^bTotal electron conversion coefficients. From Ref. [23].

^cFrom Ref. [20].

 $^{d}B(E2)$ values are given in $e^{2}fm^{4}$ (1 W.u.= 75.09 $e^{2}fm^{4}$), and the B(M1) values are given in μ_{N}^{2} . In the

calculations for the transitions strengths we have assumed vanishing α -decay branches.

Ниско спинови състояния с положителна четност в ядрото на Ро-212

Single-shell approximation + empirical interaction from neighboring nuclei (P. Van Isacker) Basis states: $|(2g_{9/2})^2 J_{\nu}, (1h_{9/2})^2 J_{\pi}; J\rangle \equiv |J_{\nu}J_{\pi}J\rangle$ ²¹²Po: ²⁰⁸Pb+ $\nu(2g_{9/2})^2 + \pi(1h_{9/2})^2$ $\langle J_{\nu}J_{\pi}J | \hat{H} | J'_{\nu}J'_{\pi}J \rangle = (V_{\nu\nu}^{J_{\nu}} + V_{\pi\pi}^{J_{\pi}})\delta_{J_{\nu}J'_{\nu}}\delta_{J_{\pi}J'_{\pi}} + 4\sqrt{(2J_{\nu}+1)(2J_{\pi}+1)(2J'_{\nu}+1)(2J'_{\pi}+1)}\sum_{R} \begin{vmatrix} J_{\nu}J_{\pi}J_{\pi}J_{\nu} \\ RJ_{\pi}J_{\pi}J_{\nu} \\ i_{\nu}J_{\pi}J_{\pi}J_{\nu} \end{vmatrix} V_{\nu\pi}^{R}$ $V_{\nu\nu}^{J_{\nu}}$: from the experimental spectrum (0⁺ – 8⁺) of ²¹⁰Pb (2 ν in 2 $g_{9/2}$) $V_{\pi\pi}^{J_{\pi}}$: from the experimental spectrum (0⁺ – 8⁺) of ²¹⁰Po (2 π in 1 $h_{9/2}$) seniority spectra $V^{\it R}_{_{
u\pi}}$: from the experimental spectrum (0⁻ – 9⁻) of ²¹⁰Bi $\hat{T}_{\mu}(M1) = \sqrt{\frac{3}{4\pi}} \sqrt{\frac{j(j+1)(2j+1)}{3}} [g_{\nu}(\nu_{j}^{\dagger} \times \tilde{\nu}_{j})_{\mu}^{(1)} + g_{\pi}(\pi_{j}^{\dagger} \times \pi_{j})_{\mu}^{(1)}]$ M1 operator: $j = j_{\nu} = j_{\pi} = 9/2 \qquad g_{\nu} = -0.33\mu_{N} \qquad \begin{bmatrix} ^{209} \text{Pb} : \mu(9/2^{+}_{1,\text{gs}}) = -1.4735(16)\mu_{N} \\ g_{\pi} = +0.91\mu_{N} \end{bmatrix} \begin{bmatrix} ^{209} \text{Pb} : \mu(9/2^{-},1,\text{gs}) = +4.1103(5)\mu_{N} \end{bmatrix}$ E2 operator: $\hat{T}_{\mu}(E2) = -\sqrt{\frac{(2j-1)(2j+1)(2j+3)}{64\pi i(j+1)}}(N+\frac{3}{2})b^2[e_{\nu}(\nu_j^{\dagger} \times \tilde{\nu}_j)_{\mu}^{(2)} + e_{\pi}(\pi_j^{\dagger} \times \pi_j)_{\mu}^{(2)}]$ $b \approx 1.0A^{1/6} fm$ $e_v = 0.88$ $e_- = 1.11$ $B(E2;8^+ \to 6^+)$ in ²¹⁰Pb and ²¹⁰Po

Ниско спинови състояния с положителна четност в ядрото на Po-212

Изовекторно състояние в ²¹²Ро

 $|2_{1}^{+}\rangle = 0.488 |J_{\nu} = 0, J_{\pi} = 2, J = 2\rangle + 0.819 |J_{\nu} = 2, J_{\pi} = 0, J = 2\rangle + \dots 87\%$ $|2_{2}^{+}\rangle = 0.813 |J_{\nu} = 0, J_{\pi} = 2, J = 2\rangle + \dots 0.517 |J_{\nu} = 2, J_{\pi} = 0, J = 2\rangle + \dots 93\%$

- Почти ортогонални състояния;
- Състои се от протонни и неутронно $S(J_{v(\pi)}=0)$ и $D(J_{v(\pi)}=2)$ двойки;
- 2⁺₂ състояние има изовекторна природа;

Идентифицирано беше първото ниско лежащо изовекторно състояние в областта около двойномагичното ядро Pb-208.

Благодаря за вниманието!

TECHNISCHE UNIVERSITÄT DARMSTADT

Universität zu Köln

