

Софийски университет "Св. Климент Охридски" Физически факултет Катедра "Атомна физика"

Слабо колективни 2⁺ възбуждания в ядрата ^{210,212}Ро

Атестационен семинар

Докторант: Диана Кочева

Научен ръководител: Проф. дфзн Г. Райновски

Преходът: едночастични → колективни възбуждания

Слоест модел;Валентни нуклеони;

Преходът: едночастични → колективни възбуждания

Слоест модел;Валентни нуклеони;

"Seniority" поведение

- Несдвоените нуклеони;
- Намаляване на енергиите между 0⁺, 2⁺, 4⁺, ... (2*j*-1);
- (2*j*-1) → (2*j*-3) → изомер (2*j*-1);

	Пр	ред	ходн	ТRИ	експе	риме	ент	
(a)		10+	<u>2377</u> 2 *	(b) 2040				
10+	<u>1832</u> 2 ⁺ _3 1679)						
8+ 6+ 4+	1475 2 ⁺ / ₂ 1512 1356 1132 MSS	8+ 6+ 4+	1350 <u>2</u> 2 126 1081	1362 1				
2+	727	2+	690	$\frac{1}{J_i \to J_f}$	$B(M1; J_i \rightarrow Experiment$	$J_f)(\mu_{\rm N}^2)$ Theory	$B(E2; J_i \rightarrow .)$ Experiment	$I_f)(e^2 fm^4)$ Theory
0+	0	0+	0	$\begin{array}{c} 2^+_1 \to 0^+_1 \\ 4^+_1 \to 2^+_1 \\ 6^+_1 \to 4^+_1 \end{array}$			293 (83) ^a	463 533 300
				$8^+_l \rightarrow 6^+_l$			1031(300) ^b 173 (68) ^a 353(9) ^b	103
				$10^+_1 \rightarrow 8^+_1$			165 (45) ^a	75
				$2_2^+ \rightarrow 0_1^+$ $2_2^+ \rightarrow 2_1^+$	0.126(16)°	0.46	29 (4)° 24 (16)°	59 17
				$2^2_3 \rightarrow 0^1_1$		0.10	20 (5)°	7
				$2^+_3 \rightarrow 2^+_1$	0.042(20) ^c	0.0003	290 (273)°	186

Тандемен ускорител в Кьолн, Германия

- Реакция ²⁰⁸Pb(¹²C,⁸Be)²¹²Po @ 64 MeV (V_{col} ≈ 64 MeV);
- Мишена 0.6 mg/cm² ²⁰⁸Pb @ 2 mg/cm² ¹⁹⁷Au;
- Стопер 2 mg/cm² ¹⁹⁷Au;
- Експериментална установка "плънджерно устройство":
 - 5 HpGe детектора на 142.3°, 6 HpGe детектора на 35.0°;
 - пръстен от 6 соларни клетки (10 mm × 10 mm) покриващи ъгъл м/у 116.8° 167.2°;
 - основен тригер ү-а или ү-ү съвпадения;
- Дистанции 25um, 35um, 43um, 55um, 70um, 100um;

I. & II.

$$\tau(2_1^+, E_x = 727 \text{ keV}) = 22.3(29) \text{ ps}$$

 $B(E2; 2_1^+ \to 0_1^+) = 178(23)e^2 \text{ fm}^4 = 2.4(3) \text{ W. u.}$

Тандемен ускорител в Кьолн, Германия

- Реакция ²⁰⁸Pb(¹²C,¹⁰Be)²¹⁰Po @ 62 MeV (V_{col} ≈ 64 MeV);
- Мишена 10 mg/cm² ²⁰⁸Pb (99% обогатена);
- Експериментална установка "плънджерно устройство":
 - 5 HpGe детектора на 142.3°, 6 HpGe детектора на 35.0°;
 - пръстен от 6 соларни клетки (10 mm × 10 mm) покриващи ъгъл м/у 116.8° 167.2°;
 - основен тригер ү-а или ү-ү съвпадения;

Analysis Program for Continuous Angle DSAM – APCAD:

- Спирачни способности на ²¹⁰Ро;
 Set-up на експеримента (ограничението от соларните клетки + разположението на HPGe детектори);
- Отклик на НРGе детектори;

История на заселване на изследваните нива;

E_{level} (keV)	J^{π}	J_{final}^{π}	E_{γ} (keV)	$egin{array}{cc} I_\gamma & ^1 \ \% \end{array}$	$lpha$ 2	δ^{3}	τ (ps)	Transition strength $J^{\pi} \rightarrow J^{\pi}_{final} {}^4$		
1181	2_{1}^{+}	0_{1}^{+}	1181	100	0.00535		2.6(4)	B(E2) = 136(21)		
2290	2^{+}_{2}	$0^+_1 \\ 2^+_1$	2290 1108	100(2) 11.2(11)	$0.00198 \\ 0.0133$	0.61(31)	0.22(4)	$B(E2)=53(11) \\ B(M1)=0.014(7) \\ B(E2)=60(29) $	- IEW	
2387	3^{-}_{1}	$\begin{array}{c} 0^+_1\\ 2^+_1\\ 4^+_1 \end{array}$	2387 1205 960	$1.0(3) \\ 100.0(15) \\ 11.3(6)$	$0.00309 \\ 0.00197 \\ 0.00292$		0.50(6) vs.	$B(E3) = 70(31) \times 10^{3}$ $B(E1) = 0.64(9) \times 10^{-3}$ $B(E1) = 0.14(3) \times 10^{-3}$		
					τ(lit.)≈0.43ps					

Shell model:

много добро възпроизвеждане енергиите на 2⁺→ 4⁺→ 6⁺→ 8⁺;
В(*E*2; 2⁺→ 0⁺)=3.6 W.u.

Заключение

		210	Po					²¹⁰ F	b		
J_i^{π}	$B(E2; J_i \to J_f)(e^2 fm^4)$					J_i^{π}		$B(E2; J_i \rightarrow J_f)(e^2 \text{fm}^4)$			
	J_f^π	Expt	SM	1- gh	SM2-gh		J_f^{π}	Expt	SM1-gh	SM2- gh	
2_{1}^{+}	0^+_1	$136(21)^{c}$	2	63	137	2^{+}_{1}	0^+_1	105(30)	166	106	
4_{1}^{+}	2_{1}^{+}	335(14)	3	02	157	4_{1}^{+}	2_{1}^{+}	360(68)	191	121	
6^+_1	4_{1}^{+}	229(7)	2	09	109	6^+_1	4_{1}^{+}	158(60)	132	84	
8^{+}_{1}	6^+_1	84(3)		84	• 44	8^+_1	6^+_1	53(23)	53	✔ 34	
					21	² Po					
		=	J_i^{π} .	J_f^{π}	E	$B(E2; J_i -$	$\rightarrow J_f)(e^2f$	m ⁴)			
					Expt	SMI	$-gh^a$	$SM2$ - gh^b			
		-	2_1^+ 0	0_{1}^{+}	$178(23)^{c}$	4	64	271			
			4_1^+ 2	2^+_1		535 301		313			
			6_1^+ 4	4_{1}^{+}	293(83)			178			
			81 6	b_{1}^{+}	173(68)	1	03	62			
			2^+_2 (0_{1}^{+}	$29(4)^{d}$	59		27			
			2	2^+_1	$24(16)^d$	1	7	8			

Благодаря за вниманието!

TECHNISCHE UNIVERSITÄT DARMSTADT

Universität zu Köln

