Измерване

на времена на живот в ядрата

²⁰⁸Ро и ²⁰⁹Ро

Атестационен семинар

Докторант : Милена Стоянова Научен ръководител : проф. дфзн. Г. Райновски

Мотивация

1

Po204 3.53 h 834.0, 270.1, 1016.3, 5.377 m E 2.33	Po205 5/- 1.7 h 872.4, 1001.2, 849.8, 836.8, 0 5.22 si E 3.55	Po206 8.8.d 1032,3:511-3, 286.4, 807.4,4 5.223 E 1.65	19 Po207 5- 2.8 s 7 814.50, 1° 895 (c), 300.50 91 (c), 19 814.50, 1° 895 (c), 19 814.50, 1° 895 (c), 19 814.50, 1° 895 (c), 19 814.50, 1° 895 (c), 19 814.50, 1° 815 (c), 19 815 (c), 10 815	Po208 2.098 a 5115.** 291.8 vie. 570.1, 601.5,-*	Po209 1/- 102 a a 4.800 7 280 5 w 282.8 c 1 896 1 m 206 982430	Po210 R87 138.38 d 5.304	(25/*)Po211 9/* 25.2 s Acc 7.3 0,516 s *7.451.* 7.562.30 1053.10 807.2.* 1.8 210.9886653	18 ⁺ Ро212 45 з и 11.65, 9 2054.4, 583.0 17 + 36
$\begin{array}{c} Bi203 & {}^{9/7}\\ 11.8 & h \\ {}^{0}\\ {}^{\beta^{\pm}}1.35(\omega), 0.74 \\ {}^{\gamma}020.3, 8252D, \\ 897, 1847, {}^{\circ}\\ \alpha^{-4}.857 & v_{20} \\ \hline \alpha^{-4}.857 & v_{20} \\ \hline e 3.25 \end{array}$	Bi204 ⁸⁺ 11.2 h ⁵ 1899.2D, 374.8D, 984.0, β ⁺ ω E 4.44	Bi205 15.31 d 5* 0.98 at 7 1764.3, 703.5, 987.6D, E 2.71	Bi206 6.243 d p+ 0.95 vis 1 803.1, 861.0, 516.2,- E 3.76	Bi207 9'- 32 a p+w 7 569.7, 1083.7D, E 2.397	Bi208 (5)* 3.60E5 a 7.3634.4 E 2.678	Bi209	Bi210 3.0E6 a RaE 1.00	Bi211 8 ⁴ AcC 2.14 m α 8.623, 6.279 γ 351.1 β ⁻ ω
9- Pb202 3.54 h 5.3E4 a 17 787.0, 7 422.1, 4 420.5, 4 490.5, 4 59.7, E 0.05	13)+ Pb203 SP 6.2 s 7 825.2 7 820.3 E 0.97	9- Pb204 1.12 h 1.12 h 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Pb205 1.5E7 a 0 07 4.5 E 0.0505	Pb206 24.1 Rag 97 0.027, 0.10 205.974465	13/+ Pb207 1/- 0.80 s 22.1 IF 1063.7 7 569.7 0/ 0.70, 0.38 206.975697	Pb208 ThD 52.4 m, 0.23 mb, 2.0 mb m, 8 pb 207, 876652	Pb209 8/+ 3.25 h 10 7 5 0.645	Pb210 R5D 22.3 a p= 0.017, 0.061 y= 0.5 e a 3.72 vm oy 0.5 E 0,0635

D. Kocheva et all,
all, Eur.Phys.J.D. Kocheva et all,
Phys.Rev. C 96,M. Stoyanova et all,
Phys.Rev. C 100,
064304 (2019)A 53, 175 (2017)044305 (2017)064304 (2019)

Мотивация

B(E2; J → J-2) (W.u.) B(E2; J → J-2) (W.u.) B(E2; J → J-2) (M.u.)

B(E2; J → J-2) (W.u.) 05 00

N

Ν

B(E2;2⁺→0⁺)

Generalyzed Centroid Difference Method

Експерименти

²⁰⁸**Po**

FN Tandem Facility IKP Köln Germany

Reaction : 204 Pb(12 C, 8 Be) 208 Po at 62 MeV Target : 23 mg/cm² Al foil 80 μ m

- 6 HpGe at 45° и 5 HpGe at 142°
- 6 solar cells between 117°- 167°
- 7 LaBr₃(Ce) at 90°

Резултати 208Ро

$$PRD(E_{Feeder}, E_{Decay}) = \Delta C(E_{Feeder}, E_{Decay}) - 2\tau$$

Резултати 208Ро

7

τ(4⁺,²⁰⁸Po) = 125(31) ps Нов резултат

8

Резултати 208Ро

Nucleus	\mathbf{J}_{i}^{π}	$\mathbf{J}_{\mathrm{f}}^{\mathrm{\pi}}$	E _y (kev)	α	I _, %	τ (ps)	B(E2) (W.u.)
²⁰⁴ Po	4 ₁ +	2 ₁ +	516	0.0297	100	23(6)	13(3)
²⁰⁶ Po	4 ₁ +	2 ₁ +	477	0.0359	100	89(7)	5.0(4)
²⁰⁸ Po	4 ₁ +	2 ₁ +	660	0.0173	100	125(31)	0.7(2)

M. Stoyanova et al., Phys.Rev. C **100**, 064304 (2019) M. Stoyanova et al., J. Phys.: Conf. Ser. **1555,** 012019 (2020)

Резултати 208 Ро

Експерименти

²⁰⁹**Po**

FN Tandem Facility IKP Köln Germany

Reaction : ²⁰⁶Pb(¹¹B,4n)²¹³Fr at 56 MeV

Target : 14.5 mg/cm^2

Backing : 130 mg/cm² Au

$$T_{1/2} = 36.4 \text{ s}, \alpha$$

 $^{213}\text{Fr} \xrightarrow{209}\text{At} (J^{\pi} = 9/2^{-})$
 $T_{1/2} = 5.4 \text{ h}, \text{EC}$
 $^{209}\text{At} \xrightarrow{209}\text{Po}$

8 HpGe detectors 12 LaBr₃(Ce)

Резултати 209Ро

$$PRD(E_{Feeder}, E_{Decay}) = \Delta C(E_{Feeder}, E_{Decay}) - 2\tau$$

Резултати 209 ро

1 W.u. = 73.67 $e^2 fm^4$

E _{level} (kev)	\mathbf{J}_{i}^{π}	$\mathbf{J}_{\mathrm{f}}^{\mathrm{\pi}}$	E _y (kev)	α	I <mark>,</mark> %	τ (ps)	B(E2) (e²fm⁴)
1327	9/2 ₁	5/2 ₁ -	782	0.0120	100(3)	20(6)	92(19)
		5/2 ₂ -	151.4	1.319	0.097(28)	၁၂၀)	327(89)

$$\begin{split} \mathsf{E}_{2^{*}}(^{210}\mathsf{Po}) &\simeq \mathsf{C.G.}(^{209}\mathsf{Po}) = \frac{\sum_{\mathsf{level}} \mathsf{E}_{\mathsf{level}}(2\mathsf{J}\!+\!1)}{\sum_{\mathsf{II}} (2\mathsf{J}\!+\!1)} \quad \begin{array}{c} \mathsf{J}\!=\!\!(\mathsf{1}/2,\ldots,\mathsf{9}/2) \\ \mathsf{J}\!=\!\!(\mathsf{1}/2,\ldots,\mathsf{9}/2) \\ \pi(\mathsf{h}_{\mathsf{9}/2})^{\mathsf{+2}} \otimes v(2\mathsf{f}_{\mathsf{5}/2})^{-1} \\ \mathfrak{Z}^{\mathsf{+}} \otimes (2\mathsf{f}_{\mathsf{5}/2}^{-1}) \\ \end{array} \end{split}$$

 $B(E2;2_{1}^{+}\rightarrow 0_{1}^{+})^{210}Po \simeq B(E2;9/2_{1}^{-}\rightarrow 5/2_{1}^{-})^{-209}Po$ $|| 136(21) e^{2}fm^{4} \qquad Vs. \qquad 92(19) e^{2}fm^{4}$

Заключение

За четно-четните полониеви изотопи :

8⁺₁ и 6⁺₁ състоянията имат едночастичен характер
 4⁺₁ състоянието има колективен характер
 За 4⁺₁ състоянието, преходът от едночастичен характер към колективен се осъществява между N = 122 и N = 120

4. Теоретични сметки за ядрото ²⁰⁹Ро

Участие в конференции за целият период на докторантурата :

1. Nuclear Structure and related topics, 03-09.06.2018, Burgas, Bulgaria;

2. 10th Jubilee International Conference of the Balkan Physics Union, 26-30.08.2018, Sofia, Bulgaria;

3. Euroschool on exotic beams, 25-31.08.2019, Aarhus, Denmark;

4. XXIII international school on nuclear physics, neutron physics and applications, 22-28.09.2019, Варна, България;

Публикации свързани с дисертацията за целият период на докторантурата:

1. M. Stoyanova et al, J. Phys.: Conf. Ser. **1555**, 012019 (2020)

2. M. Stoyanova et al., Phys. Rev. C 100, 064304 (2019)

3. V. Karayonchev,..., M. Stoyanova et al., Phys. Rev. C 99, 024326 (2019)

4. M. Stoyanova et al., EPJ Web of Conferences 194, 03002 (2018)

Други публикации:

1. P. Petkov, M. Stoyanova, Bulg. J. Phys. **42**, 565–571,(2015)

2. D. Kocheva,..., M. Stoyanova,..., et al., Eur.Phys.J. A **53**, 175 (2017)

3. D. Kocheva,..., M. Stoyanova,..., et al., IOP Journal of Physics : Conf. Series **1023**, 012019 (2018)

4. R. Kern,..., M. Stoyanova,..., et al., EPJ Web of Conferences 194, 03003 (2018)

5. D. Kocheva,..., M. Stoyanova,..., et al., J. Phys.: Conf. Ser. 1555 012020 (2020)

6. R. Kern,..., M. Stoyanova,..., et al., J. Phys.: Conf. Ser. **1555** 012027 (2020)

7. D. Tonev,..., M. Stoyanova,..., et al., PLB-D-20-00725, submitted

G. Rainovski, K. Gladnishki, M. Djongolov, D. Kalaydjieva, D. Kocheva, A. Yaneva *Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria*

R.Kern, N. Pietralla, Th. Kröll, V. Werner, O. Möller, J. Wiederhold, Ch. Sürder Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

> J. Jolie, V. Karayonchev, A. Blazhev, J.-M. Régis, N. Warr Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany

M. Scheck, J. Kechngs, J. Sinclair, K. Mashtakov School of Engineering & Computing, University of the West of Scotland, Paisley PA1 2BE, United Kingdom

Universität zu Köln

БЛАГОДАРЯ ЗА ВНИМАНИЕТО!

Universität zu Köln