Експерименти с радиоактивни снопове проведени на HRIBF в националната лаборатория в Оук Ридж

Мирослав Данчев

Goals of today nuclear physics

Central goal: to explain the properties of nuclei and of nuclear mater

- What are the limits of nuclear existence ?
- What is the mechanism of nuclear binding ? (QCD)
- How do weak binding and extreme proton-to neutron asymmetries affect nuclear properties ?
- How the properties of nuclei evolve with changes in proton and neutron number excitation energy and angular momentum ?
- What is the origin of simple patterns in complex nuclei ?
- What is the quantitative origin of the chemical elements in the Big Bang and continuing to the supernovae we observe today ?
- What is the mechanism of energy generation in stars ?

Evolution of nuclear structure

Fusion evaporation reactions

Results for ¹⁷²Pt

Radioactive Ion Beams production

Isotope Separator On-Line (ISOL) Technique at HRIBF

Holifield Radioactive Ion Beam Facility

Coulomb excitation of RIBs

Problems:

- high v/c~5-6%
- high background from rad. decay
- isobaric contamination of the beam
- low intensity

- useful to excite low lying states
- exact theory (Alder and Winther) can calculate Rutherford and Coulomb cross section
- can measure transition rates and g-factors

Solutions:

- use of segmented Ge detectors
- use of auxiliary detectors (HyBall)
- monitoring of the beam composition with Bragg detector

Experimental setup

HyBall – CsI charged particle detector

g-factors

• orbital magnetic moment of nucleons $\mu = g_l l \mu_N$ $\mu_N = \frac{e\hbar}{2m_p}$ proton $g_l = 1$ neutron $g_l = 0$ • intrinsic magnetic moment of nucleons $\mu = g_s s \mu_N$ proton $-g_s = 5.6$ neutron $-g_s = -3.8$

For well deformed nuclei (good rotors) magnetic moment is:

$$\mu(I) = I \frac{Z}{A} \mu_N$$

The only interesting magnetic moments are for nuclei near the closed shells !

Motivation for g-factor measurement of the 2⁺ state of ¹³²Te

Transient Field Method

Difficulties for direct transfer to RIBs experiments

1. $\Delta \theta$ always small - few degrees, requiring high statistics for accurate measurement.

2. Elastic scattered beam nuclei behave like Coulomb excited nuclei and are stopped in the same region. With an RIB these will give a strong background activity [~ 100 x Coulex]

3. The RIB may contain contaminant activity including decay through the Coulomb exited state - more unwanted coincidences.

Recoil in Vacuum

Experimental details

¹³²Te RIB

Beam energy: 3 MeV/u

Target: 0.83mg/cm² thick ¹²C Run time 64 h with beam intensity of 3x10⁷ ^{122,126,130}Te SIBs

Beam energy: 3 MeV/u

Target 1: 0.956 mg/cm² ¹²C

Target 2: 0.63mg/cm^2 ¹²C + 14.3mg/cm² Cu

Te isotopes	122	126	130	132
2+ state lifetimes t _n (ps)	10.8(1)	6.5(2)	3.3(1)	2.60(26)

g-factors (TF averages) 0.340(10) 0.275(30) 0.295(35)

Offline reduction of experimental data

Analysis of the data

The general expression of angular correlation function is given by:

 $W(\theta_{\gamma}, \theta_{p}, \phi) = \sum_{kq} \langle \rho_{kq}(\theta_{p}) \rangle \sqrt{2k+1} F_{k}(2220) Q_{k} G_{k} D_{q0}^{k*}(\phi, \theta_{\gamma}, 0)$

All coincident data were divided into 9 groups (3 HyBall rings \times 3 CLARION rings) and were investigated as function of angle ϕ .

- Understanding unattenuated distribution.
- Understanding attenuated distribution. Fitting the experimental data with respect to G_2 and G_4 attenuation factors. Deriving g-factor from G_2 and G_4 .

Unattenuated distributions for ¹³⁰Te

Fitted attenuated distributions for ring 3 of HyBall

Fast relaxation model (Abragam and Pound theory)

• When electronic states lifetime is short compared to lifetime of the nuclear state and the precession time.

 $au_{
m electronic} \ll au_{
m nuclear}$ $au_{
m electronic} \ll \omega_m^{-1}$ where $\omega_m = g\mu_N \langle H^2 \rangle^{1/2} / \hbar$

The hyperfine interaction varies both in magnitude and direction with short fluctuation time.

1.0

• Easy to calibrate theory. We need only one isotope with known g-factor

Slow relaxation (Static model)

 $\tau_{\text{electronic}} \gg \tau_{\text{nuclear}} \Rightarrow$ hyperfine interaction is constant both in magnitude and direction over the nuclear lifetime.

- Difficult to teoreticaly approach model. Requires knowledge of electronic states
- G_2 and G_4 are independent \Rightarrow experimental data are fitted with two free parameters.

This theory gives attenuation factors, integrated over the nuclear lifetime:

$$G_k = \sum_{q} \left(A_q + \frac{B_q}{D_q g^2 \tau_{\text{nuclear}}^2 + 1} \right)$$

q denote different ionic states with quantum numbers I + J = F

Experimental G_2, G_4 for ¹³²Te and values of extracted $g\tau$ on static model

modeled by Timlin, Oxford 2004

Final result

Comparison of experimental G_2 , G_4 distinguishes between the chaotic and static models.

When they are allowed to range freely, the ratio G_2/G_4 does NOT agree with chaotic model.

So, go for static limits with combined error

|g-factor| for ¹³²Te 2⁺ = 0.350(50)

Second experiment for ¹³⁶Te

- Motivation: In view of the anomalously small B(E2), we decided to test SM and RPA theories through measuring B(E2) of other 2⁺ states
- Setup: Rings 1 to 5 of BareBall & 10 Clovers
 - Bragg detector to monitor isobaric composition of the beam
- Beams and targets
 - 410 MeV ¹³⁶Te + "1.5 mg ⁵⁰Ti" target. But target has ~90% ⁵⁰Ti & ~8%
 ⁴⁸Ti
 - SIB Run: 390 MeV 126 Te + "1.5 mg 50 Ti"

Isobaric composition (Bragg data)

- We fitted the ¹²⁶Te peak shape to get fit parameters for asymmetric shape. We used this to fit the A=136 spectrum that was taken simultaneously with Coulex.
- Composition: Te 86(1.5)%, I 8.2(1)%, Cs 1.3(.5)%, Ba 4.6(.6)%

¹²⁶Te data

- Nearly 70k p-g counts in rings 3 & 4.
- Use these data to determine target composition (~90% ⁵⁰Ti) & to get [¹²⁶Te/⁵⁰Ti]_{Exp}

¹³⁶Te data

- Nearly 4k p-g counts in rings 2 to 4. Improvements: ~x4 Ti, ~x2 intensity, ~x2 ring 4
- We extracted [¹³⁶Te/Ruth]_{Exp}, [¹³⁶Te/⁵⁰Ti]_{Exp}, [¹³⁶Te/¹³⁶Ba]_{Exp}

Analysis of ¹³⁶Te data

Several way to deduce B(E2) value

- •¹³⁶Te/Ruth
- •¹³⁶Te/⁵⁰Ti
- •¹³⁶Te/¹³⁶Ba
- [¹³⁶te/⁵⁰Ti]/[¹²⁶Te/⁵⁰Ti]

Preliminary result – $B(E2) \sim 0.15(5)$

It is possible also to deduce g-factor. Analysis of calibration data is still in progress !

Acknowledgments

A. E. Stuchbery

The Australian National University, Canberra, Australia

N. J. Stone, J. Rikovska-Stone and C. Timlin

Oxford University, UK

A. Galindo-Uribarri, **C. Baktash**, J. Pavan, D. C. Radford, J. Beene, and C. J. Gross

Physics Division, Oak Ridge National Laboratory

N. Benczer-Koller, G. Kumbartzki and E. Stefanova Rutgers University

C. R. Bingham

University of Tennessee