Атестационен семинар

Измерване на времена на живот за възбудени състояния в "yrast" ивицата на ядрото ¹²⁴Ва

Изготвила: Мария Тричкова

Научен ръководител: Доц. д-р Калин Гладнишки

Катедра "Атомна физика", Физически факултет, Софийски Университет Св. Климент Охридски

14.06.2018

Еволюция на формата на ядрото

Аналитични решения за хамилтониана на Бор

$$H_B = T_{vib} + T_{rot} + V (\beta, \gamma)$$

Еволюция на формата на ядрото

Аналитични решения за хамилтониана на Бор

Експериментални индикации за реализация на X(5)-решението

Критерии при подбор на X(5)-кандидати

$$R_{4/2} = \frac{E_{I^+}}{E_{2^+}} \approx 2.91$$

Критерии при подбор на X(5)-кандидати

$$R_{4/2} = \frac{E_{I^+}}{E_{2^+}} \approx 2.91 \qquad P = \frac{N_p N_n}{N_p + N_n} \approx 5$$

Критерии при подбор на X(5)-кандидати

$$R_{4/2} = \frac{E_{I^+}}{E_{2^+}} \approx 2.91 \qquad P = \frac{N_p N_n}{N_p + N_n} \approx 5$$

$$R_{4/2}(^{124}\text{Ba}) = 2.83$$

 $P(^{124}Ba) = 4.5$

Decay scheme: T. Komatsubara, Nucl. Phys. A496, 605-620 (1989).

Експеримент

- Реакция ¹⁰⁵Pd (²³Na,4n) ¹²⁴Ba @ 93MeV осъществена чрез ускорител "FN Tandem" в Институт по ядрена физика, Кьолнски Университет (Institute of Nuclear Physics of the University of Cologne);
- Метод на измерване: Метод на откатните ядра RDDS (Recoil Distance Doppler shift) в режим на ү-ү съвпадения;
- 10 полупроводникови детектора от свръх чист германий (HpGe) на ъгли 0°, 45° и 142°.
- Мишена: 94% ¹⁰⁵Pd (0.65 mg/cm²); Спиращо фолио: Та (7.3 mg/cm²);
- Средна откатна скорост: v/c ~ 1.14%;
- 14 разстояния между мишената и спиращото фолио от 2 до 268 μm.

Метод на анализ: DDCM (Differential decay-curve)

4+→2+

Метод на анализ: DDCM (Differential decay-curve)

6⁺→4⁺

Анализ на експерименталните данни

 $\tau = 8.762 + 0.596 \text{ ps}$ Интензивност 14. на Неотместена 12. компонента 4 B $\tau(x) = \frac{I_{us}}{v \frac{dI_s}{dx}}$ 10-На преход 4+→2+ 8 6. Интензивност на Отместена компонента На преход 4+→2+ 40000. counts (10+)2687.5 30000 764.4 20000 10000 1923.3 8+ 694.7 100 20000 1228.4 18000. 6+ Гейт 576.5 16000 counts 14000 12000 651.7 10000 Изследван 421.1 8000 6000. преход 229.9 4000. 229.7 2000 . 0.0 0+ Distance [M crometer]

4+→2+

$I_i \rightarrow I_f$	Eγ, keV	<i>τ (средно),</i> ps	$B(E2)$, $e^{2}b^{2}$
$4^+ \rightarrow 2^+$	421.1	9.1 ± 0.8	0.664 ± 0.058
$6^+ \rightarrow 4^+$	576.5	2.08 ± 0.24	0.6 ± 0.1
$8^+ \rightarrow 6^+$	694.7	1.18 ± 0.41	0.425 ± 0.148

Преход	Теоретични стойности – Х(5)		Експериментални резултати	
$I_i \rightarrow I_f$	Е, отн. единици	<i>В(Е2)</i> , отн. единици	Е, отн. единици	<i>В(Е2)</i> , отн. единици
$4^+ \rightarrow 2^+$	2.91	1.58	2.83 ± 0.01	1.60 ± 0.17
$6^+ \rightarrow 4^+$	5.45	1.98	5.34 ± 0.02	1.48 ± 0.26
$8^+ \rightarrow 6^+$	8.51	2.27	8.37 ± 0.04	1.03 ± 0.036

Където: Стойностите за енергиите и *B(E2)* са представени като отношение спрямо стойностите за първото възбудено 2⁺ състояние.

Преход	Теоретични стойности – X(5)		Експериментални резултати	
$I_i \rightarrow I_f$	Е, отн. единици	<i>В(Е2)</i> , отн. единици	Е, отн. единици	<i>В(Е2)</i> , отн. единици
$4^+ \rightarrow 2^+$	2.91	1.58	2.83 ± 0.01	1.60 ± 0.17
$6^+ \rightarrow 4^+$	5.45	1.98	5.34 ± 0.02	1.48 ± 0.26
$8^+ \rightarrow 6^+$	8.51	2.27	8.37 ± 0.04	1.03 ± 0.036

Където: Стойностите за енергиите и *B(E2)* са представени като отношение спрямо стойностите за първото възбудено 2⁺ състояние.

Преход	Теоретични стойности – Х(5)		Експериментални резултати	
$I_i \rightarrow I_f$	Е, отн. единици	<i>В(Е2)</i> , отн. единици	Е, отн. единици	<i>В(Е2)</i> , отн. единици
$4^+ \rightarrow 2^+$	2.91	1.58	2.83 ± 0.01	1.60 ± 0.17
$6^+ \rightarrow 4^+$	5.45	1.98	5.34 ± 0.02	1.48 ± 0.26
$8^+ \rightarrow 6^+$	8.51	2.27	8.37 ± 0.04	1.03 ± 0.036

Не е Х(5) ядро

Заключение

- Представени са данни за времената на живот и приведените вероятности за *E2* преход за 3 състояния от "yrast" ивицата на ядрото ¹²⁴Ba.
- Въз основа на получените резултати може да се заключи, че Х(5)-решението не се реализира в ядрото ¹²⁴Ва.

Признателност:

К. А. Гладнишки, Г. Райновски, Д. Калайджиева

Катедра "Атомна физика", Физически факултет, Софийски Университет Св. Климент Охридски SOPIA UNIVERSITY "St. Kilment Ghridski"

A. Dewald, J. Jolie, C. Müller-Gatermann, M. Beckers, A. Blazhev, C. Fransen, A. Esmaylzadeh, V. Karayonchev

Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany

Благодаря за вниманието