# Атестационен семинар за дисертация на тема:

Механизми на въздействие на йонизиращо лъчение върху жива материя

Докторант : Снежина Ивелинова Димитрова Специалност: Биофизика Катедра: Атомна физика Научен ръководител: проф.дфзн Леандър Литов

## Съдържание:

- Какво е адронна терапия?
- ► Geant4
- ► Geant4-DNA
- Резултати от симулации

### Какво е адронна терапия?



Фиг. 1 Дозата като функция на дълбочината на проникване на йонизиращите лъчения за електрони, гама кванти, протони и въглеродни йони.

#### Разпределение на дозата



#### Адронната терапия в медицината

Proton

Proton

Proton

В света: Протони - 71 Въглеродни йони - 11

В Европа: Протони - 18 Въглеродни йони - 4

Пациенти: Протони - 190 036 Йони - 27 905 Данни от PTCOG

#### **Particle therapy in Europe - 2017**



#### Физични характеристики



Фиг. 2 Дозата като функция на дълбочината на проникване на йонизиращите лъчения за гама кванти, протони и въглеродни йони.

Формула на 
$$-\frac{dE}{dx} = \frac{4\pi . n. z^2}{m_e \ c^2 \ \beta^2} \cdot \left(\frac{e^2}{4\pi \varepsilon_0}\right) \cdot \left[\ln\left(\frac{2.m_e \ c^2 \ \beta^2}{I.(1-\beta^2)}\right) - \ \beta^2\right]^6$$
 Бете :

#### Geant4

• Обектно-ориентирано програмиране

Могат да се изберат:

- Геометрията world, logical и физичен обем
- Физичните процеси QGSP\_BIC\_HP ( HADRONTHERAPY\_1)
- Материала вода, РММА (G4\_PLEXIGLASS)
- Частиците протони, въглеродни йони и бор
- ▶ GEANT4-DNA процеси за моделиране на биологичните повреди

### Geant4 - DNA



#### Физични процеси

| Interaction                                            | Geant4 Model                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electromagnetic physics<br>G4EmStandardPhysics_option4 | Compton scattering, Coulomb scattering<br>Photoelectric<br>Gamma conversion<br>Rayleigh scattering<br>Ionisation(e,hadron)<br>Bremsstrahlung(e-)<br>Multiple scattering<br>Annihilation<br>Deuteron inelastic, Triton inelastic,He3<br>inelastic, alpha inelastic, ion inelastic,<br>proton inelastic, ion inelastic,<br>hadron inelastic, neutron inelastic<br>Neutron capture |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |
| Decay physics<br>G4DecayPhysics                        | Radioactive decay process                                                                                                                                                                                                                                                                                                                                                       |



Фиг.3 Линейно предадената енергия в дълбочина на протони за различни Е

### Резултати от симулации





Фиг.5 Позиция на снопа

Фиг.4 Фантом в симулациите

Фантом - 25x25x25 см Детектор - 25x25x25 см Позиция - 12.5x0x0 см Воксели - 1x1x1 мм

Епротон = 132;153;182 MeV Gauss profile  $\sigma$  = 0 MeV



#### Протони







#### Въглеродни йони















#### Заключение

- Проведена е симулация на взаимодействието на протони и леки йони с вода и РММА:
- Оценена е дълбочината на проникване на протони и леки йони в зависимост от тяхната Е
- Изследван е линейния енергиен трансфер за протони, леки йони и бор
- Показано е, че третирането на тумори с С-12 е значително по-ефективно от това с протони, като честотата на взаимодействие на йоните в областта на пика на Бряг е няколко пъти по-голяма

#### През изминалата година

- В периода 15.10.2018 26.10.2018г. посещение на лекции по Радиобиология част от основен курс по лъчелечение с ръководител проф. Л.Гочева.
- Разработен скрипт за изваждане и анализиране на резултатите от симулациите.
- Изследване на резултатите с помощта на хистограми и пакет за техния анализ ROOT
- Изследване на зависимостта на линеен енергиен трансфер за протони и въглеродни йони във вода с помощта на софтуерен пакет GEANT4
- Изследване на предимствата на въглеродните йони и протони, спрямо фотони
- Проведено сравнение с експерименталните данни от научната литература
- В период 14.05.2019 16.05.2019г. участие в XII-тата студентска школа по ядрена физика "Дни на ОИЯИ в България"

#### Благодаря Ви за вниманието!