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Abstract

In the present work a small number of methods used for describing nuclei are covered along
with some practical considerations on their use and applicability. These methods are employed
to provide theoretical information on some ground state properties of the 98Sr nucleus, which
are compared with the experimentally available data. A detailed analysis and a summary is
provided for the sensitivity of the nuclear moment of inertia in relation to the amount of pairing
correlations. All the aforementioned treatments are performed in the context of the Highly
Truncated Diagonalization Approach (HTDA) whence all relevant information is obtained.
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Chapter 1

Introduction

Nuclear physics, despite its short existence, has provided an enormous factual diversity from
experiments and numerous models attempting to systematize the behaviour of nuclear matter.
Notwithstanding the distinct number of models available, there is not one which can attribute
all the known nuclear properties to their respective nuclei over the set of all known isotopes. The
nuclear theory is a multifaceted field encompasing two major groups – collective (macroscopic)
and microscopic models, and in this work a small number of the latter are considered.

Being a theoretical investigation, the text is focused on some of the more recent models used for
analysis of the nuclear strucure. The method selected – the Highly Truncated Diagonalization
Approach – is a member of the shell-model family, but it is unique in that manner, as it
does not treat the one-body problem, but instead focuses on the more complex question of
the nuclear many-body description directly. A number of previous studies were performed
establishing it as reliable means of obtaining some valuable insight into the nuclear structure [1–
7]. When breaking the particle number symmetry is undesirable and will introduce spuriousness
in the physical observables, hence the HFB types of methods are not applicable, then HTDA
is exceptionally suitable [3].

Pairing as a nuclear phenomenon was proposed on the basis of several experimentally established
facts, which will be discussed in the following chapter. One of the observations made was
that pairing seems to strongly favor particles coupling to zero angular momentum. The delta
interaction was proposed as a possible pairing force and it was an enormous success, as it
provided explanation for many of the experimentally observed phenomena [8]. The simple
form and good properties make it very good in describing the cases where one has to account
for the higher terms in the multipole expansion. Unfortunately, to complete the space one
has to impose artificially the lower multipoles as well [4]. On the other hand, a finite range
interaction, for all intents and purposes of this text – one of gaussian type, is expected to
allow probing of couplings to higher angular momenta in the partial wave expansion without
explicitly including any of the quadrupole, octupole, etc. operators. Additionally, the finite
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range force lifts the symmetry imposed on the spin-isospin channels, and allows to explore each
one individually [4, 9, 10].
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Chapter 2

Theoretical models

2.1 Mean field theory

Although ostensibly simplistic, the treatment of the many-body problem by the mean field
ansatz has proven to be very successful. Similarly on how electrons are placed and are moving
in a central electromagnetic field created by the charge of the nucleus, it is supposed that
nucleons inside the nucleus are interacting in the same manner with a central field, even though
no such real object exists. The observation that nucleons have a length of the free run of the
same magnitude as the size of the nucleus makes possible to accept the notion of independent
particles moving in an “averaged” potential and this is strongly supported by the emergence
of “magic“ numbers similarly to the case with the electrons in the atom. While not real, the
mean field is simply a clever way to approximate the numerous interactions in which each
nucleon takes part inside the core matter with a single “effective” one. The method substitutes
the many-body problem with a one-body problem, thus providing enormous simplification to
the equations which need to be solved, while keeping at least part of the correlations existing
between the nucleons. Of course, such a scheme does not come free and it has been shown that
important physical phenomena can not be explained by the mean field theory alone [8, 11].

Obtaining the “real” mean field is a task which is ill defined by the core asumptions made by
the theory itself. Nevertheless, by making the reasonable supposition that the average potential
is approximately following the nuclear density, an analitycal formula can be provided for the
mean field - the Woods-Saxon potential [12]:

V (r) = −V0
1

1 + exp
[

1
a
(r −R)

] (2.1)

where V0 is the depth, a the surface thickness of the nucleus and R = r0A
1/3 the nuclear radius

(r0 = 1.25 fm). It, being proposed on the basis of the aforementioned observation, was shown
to give quite acceptable results in the context of the mean field theory. Unfortunately, the
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wavefunctions for this potential could not be obtained in a closed form, which is a regrettable
failing and makes it inapplicable directly to shell model calculations.

Often in the field of nuclear theory, when treating problems associated with the mean field, a
transformation of the Hamiltonian is made, splitting it to a one-body and a many-body (usually
a two-body) parts. This is helpful in numerous cases where the mean field is treated by known
and established methods, while the residual part is the one of real interest. Furthermore, it
is shown that the residual interaction is indeed the one which lifts degeneracies on the energy
otherwise unresolved by the averaged potential [8]. Starting from a general Hamiltonian, a
separation can be made, such that:

Ĥ = T̂ + V̂ = (T̂ + Û)︸ ︷︷ ︸
Ĥ0

+ (V̂ − Û)︸ ︷︷ ︸
V̂res

(2.2)

where Û is an arbitrary one-body field, Ĥ0 is the one-body Hamiltonian and V̂res is the residual
many-body interaction.

2.2 The Hartree-Fock method

The mean field theory simplifies the task of accounting for all nucleon interactions separately
by introducing an average potential, but it still does not provide a reasonable method for
extracting physical information apart from solving the Schrödinger equation explicitly. This
defficiency can be resolved by using the Hartree-Fock method, which provides an approach to
finding an approximation for the quantum system wavefunction and the corresponding energy
simultaneously from a given two-body interaction.

Ignoring relativistic effects, the Hamiltonian in some complete orthonormal basis of single-
particle states can be written as:

Ĥ =
∑
i,j

〈i|T̂ |j〉â†i âj +
1

2

∑
i,j,k,l

〈ij|V̂ |kl〉â†i â
†
j âlâk (2.3)

where â†i and âi are the creation and anihilation operators respectively for some single-particle
state i. It is then possible to formally expand a single eigenstate of that Hamiltonian through
all states with the same number of nucleons:

|Ψ〉 =
∑
i1...iA

Ci1...iA|i1 . . . iA〉 (2.4)

The states |i1 . . . iA〉 are called Hartree products and are obtained by simply occupying the
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single-particle states over the single-particle vacuum:

|i1 . . . iA〉 =
A∏
k=1

â†ik |−〉 (2.5)

It is obvious that an expansion like (2.4) is not tractable in general, because of the overwhelm-
ing number of possible combinations for the indices {ik}. To solve this problem one either
has to significantly reduce the number of particles and levels involved, or substitute the wave-
function expansion with a simpler one. In the context of the Hartree-Fock ansatz the latter is
employed by imposing the restriction of using a single term in the expansion. While this indeed
provides simplification it also removes the possibility of choosing arbitrarily the single-particle
wavefunctions, but instead they have to be provided by the method itself [8].

An unfortunate consequence of using a single term in the expansion is that the state |Ψ〉 is not
an exact eigenstate of the Hamiltonian anymore, but an approximation to one. Furthermore,
another problem presents itself in the context of particle correlations – they are not included at
all, instead the nucleons are independent of one another [8]. To account at least for the Pauli
principle it is necessary to introduce a way for the particles to be strongly correlated in respect
to their position. This is done straightforwardly by antisymmetrisation of the many-body
wavefunction:

|Ψ〉 =
1√
A!

∑
P

sgn(P )P |i1 . . . iA〉 (2.6)

where P are the permutation matrices of order A, and sgn(P ) are the corresponding permuta-
tion signatures.

It was mentioned that because of the enforcement of a specific simple form for the quantum
system wavefunction it is required that the method provide a way of deducing the basis of
single-particle states. By applying the Ritz variational principle and minimizing the energy
functional, it is possible to obtain the single-particle basis of the system iteratively. While it is
feasible to apply the Hartree-Fock approach for excited nuclear states, it is most common and
most convenient to use it for obtaining the many-body ground state [8, 11].

According to the Ritz variational principle, requiring the energy functional to be minimal:

δE[Ψ] = 0 where E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(2.7)

is equivalent to solving the Schrödinger equation:

Ĥ|Ψ〉 = E|Ψ〉 (2.8)

By varying the wavefunction through single-particle excitations:

|δΨ〉 = εâ†mân|Ψ〉 (2.9)
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and substituting back in equations (2.7):

〈δΨ|Ĥ|Ψ〉 = ε∗〈Ψ|â†mânĤ|Ψ〉 = 0 (2.10)

one can obtain the variation equation, by dropping the unimportant coefficient ε:

〈Ψ|â†mânĤ|Ψ〉 = 0 (2.11)

which is then reduced to the requirement that the Hartree-Fock Hamiltonian is diagonal:

〈i|ĥHF|j〉 = 〈i|T̂ |j〉+
A∑
k=1

〈ik|V̂ |jk〉 = εiδij (2.12)

Equation (2.12) provides the criterion by which to obtain the canonical basis and supplies the
single-particle energies εi, each one of which is interpreted as the separation energy for a given
nucleon. The total energy is then given as [8, 11]:

EHF =
A∑
i=1

εi −
1

2

A∑
ij=1

〈ij|V̂ |ĩj〉 (2.13)

2.3 The BCS model

As it was discussed, the Hartree-Fock model provides a consistent approach to finding an
approximate many-body wavefunction for a given two-body interaction. Unfortunately, it fails
to incorporate correlations beyond the mean-field, an important case of this shortcoming being
the pairing of nucleons. Introducing pairing was historically guided by several established
experimental facts [8, 13]:

• The ground state of even-even nuclei always has zero angular momentum.

• Binding energy is larger for even-even compared to odd nuclei.

• An energy gap of 1 MeV to 2 MeV is apparent between the ground state and the first
single particle excitation in even-even nuclei.

These observations led to the conclusion that coupling to zero angular momentum is strongly
favored and the residual interaction must lift the angular momenta’s degeneracy. The BCS
model provides a framework to treat the pairing correlations in nuclei by introducing pairs
of degenerate and mutually time-reversal conjugate states. The theory was adapted from the
solid-state physics where it was developed to account for superconductivity and there the pairs
are of coupled-momentum eigenstates, while for the nucleus the “good” quantum number is the
angular momentum projection onto the the intrinsic axis [11].
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Given two eigenstates of the Ĵz operator:

Ĵz|k〉 = Ωk|k〉

Ĵz|k〉 = Ωk|k〉
(2.14)

and acknowledging
{
Ĵz, T̂

}
= 0, where T̂ is the time reversal operator, it straightforwardly

follows that:

Ωk = −Ωk (2.15)

Equations (2.14) and (2.15) show that |k〉 and |k〉 are states that form a time reversal conjugate
pair:

T̂ |k〉 = |k〉

T̂ |k〉 = −|k〉
(2.16)

The cornerstone of BCS theory is the Bogoliubov-Valatin transformation by which the quasipar-
ticle creation and anihilation operators (b̂†k and b̂k) are introduced through linear combinations
of their fermionic counterparts [11]:

b̂†k = ukâ
†
k − vkâk b̂k = ukâk − vkâ†k (2.17)

b̂†
k

= ukâ
†
k

+ vkâk b̂k = ukâk + vkâ
†
k (2.18)

where uk and vk are real numbers and take values between 0 and 1.

The BCS ground state can be expressed from the single particle vacuum with the help of the
coefficients ui and vi:

|BCS〉 =
∏
k>0

(
uk + vkâ

†
kâ
†
k

)
|−〉 (2.19)

whence:

b̂k|BCS〉 = 0

b̂k|BCS〉 = 0
(2.20)

In this case the probability of a pair
(
k, k
)
being occupied is given by |vk|2 and the probability

that it remains empty is measured by |uk|2. The form of the ground state allows to treat |BCS〉
as a quasi-vacuum in respect to the quasiparticle ladder operators (2.20). As with most cases,
it is required for the ground state wavefunction to be normalized:

〈BCS|BCS〉 = 〈−|
∏
k1>0

(
uk1 + vk1 âk1 âk1

) ∏
k2>0

(
uk2 + vk2 â

†
k2
â†k2

)
|−〉 (2.21)
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The terms within the parenthesis all commute for different k1 and k2, thus the only relevant
product that needs to be considered is when k1 = k2 = k. The expression then reduces to:

〈BCS|BCS〉 =
∏
k>0

(
u2
k + v2

k

)
(2.22)

Whence the normalization condition could be extracted:

u2
k + v2

k = 1 (2.23)

From the mixing of creation and annihilation operators it can be deduced that the particle
number is not preserved, and indeed, writing the expectation value for the particle number
operator shows that explicitly:

N = 〈BCS|N̂ |BCS〉 = 〈BCS|
∑
k>0

(
â†kâk + â†

k
âk

)
|BCS〉 = 2

∑
k>0

v2
k (2.24)

While in solid state physics the particle number violation is of no real consequence, because
N ' 1023, this is not the case in nuclei, where the particle number symmetry should be strictly
observed. Otherwise serious errors may occur in treating the nuclear phenomena [8]. Starting
from the Hartree-Fock many-body Hamiltonian (2.3) and rewriting it to use the potential’s
antisymmetrized matrix element, it becomes:

Ĥ =
∑
i,j

〈i|T̂ |j〉â†i âj +
1

4

∑
i,j,k,l

〈ij|V̂ |k̃l〉â†i â
†
j âlâk (2.25)

To enforce the conservation of the particle number a term is added to the Hamiltonian:

Ĥvar = Ĥ − λN̂ (2.26)

The introduced Lagrange multiplier λ is called either chemical potential or Fermi energy, be-
cause it represents how the total energy changes for a change of the number of particles [11].
The condition which fixes the Fermi energy is (2.24).

Performing the variation:
δ〈BCS|Ĥvar|BCS〉 = 0 (2.27)

yields:

ε̃k =
1

2

[
〈k|T̂ |k〉+ 〈k|T̂ |k〉+

∑
m6=0

v2
m

(
〈km|V̂ |k̃m〉+ 〈km|V̂ |k̃m〉

)]
− λ (2.28)

∆k =
∑
m>0

umvm〈kk|V̂ |m̃m〉 (2.29)
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v2
k =

1

2

(
1− ε̃k√

ε̃2
k + ∆2

k

)
u2
k =

1

2

(
1 +

ε̃k√
ε̃2
k + ∆2

k

)
(2.30)

These equations together with the particle number formula (2.24) form the BCS equations and
allow the calculation of the coefficients vk and uk. As can be seen, they are nonlinear and have
to be solved iteratively [11].

2.4 The Highly Truncated Diagonalization Approximation

In the Hartree-Fock approach an assumption is made that the nucleus’ wavefunction can be
described by a single Slater determinant from the infinite expansion. Unfortunately, the method
does not include corelations beyond the mean field. Its derived approaches HF+BCS and HFB
do improve on that deficiency, but prove to be somewhat inconvenient as results need to be
projected so particle number is conserved. The HTDA method was conceived to provide a
shell model alike treatment for the many-body problem, thus not breaking the particle number
symmetry [1, 3].

2.4.1 Formalism

To derive the HTDA ansatz one starts from a Hamiltonian with a two-body interaction V̂ :

Ĥ = T̂ + V̂ (2.31)

which is then separated to a one-body part and a two-body part with the help of Û – a one-body
potential [14]:

Ĥ = (T̂ + Û)︸ ︷︷ ︸
Ĥ0

+ (V̂ − Û)︸ ︷︷ ︸
V̂res

(2.32)

Here Ĥ0 is the one-body Hamiltonian, having a ground state |Φ0〉 represented by a single Slater
determinant and V̂res is the remaining two-body residual interaction. HTDA consists of building
a many-body basis on top of the state |Φ0〉 and minimizing the Hamiltonian expectation value
of Ψ – the nucleus wavefunction, expanded in that basis [1].

As already mentioned, for the reference Slater determinant a solution of a HF+BCS procedure
is considered. Then the basis could be represented by:

|Φ(n)
m 〉 =

n∏
i,j

â†mi âmj |Φ0〉 (2.33)

The different configurations are represented by Slater determinants with excitations of the type
n-particles-n-holes (npnh) over the reference state.
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The nucleus wavefunction expanded in this basis is writen as:

|Ψ〉 = χ0|Φ0〉+ χ
(1)
i |Φ

(1)
i 〉+ χ

(2)
i |Φ

(2)
i 〉+ χ

(3)
i |Φ

(3)
i 〉+ . . . (2.34)

The amplitudes χi are obtained by diagonalization of the Hamiltonian in the many-body basis
and furthermore are subject to the normalization condition:∑

i

|χi|2 = 1 (2.35)

Additionally, only real values for χi are used, because the HTDA wavefunctions are even, or
could be made even, under time reversal [6].

The |Φ0〉 reference state is obtained
by a HF+BCS calculation.

Single, double, triple etc. pair excita-
tions over |Φ0〉 are constructed:

|Φ(1)
a 〉 = â†i â

†
j âkâl|Φ0〉

|Φ(2)
b 〉 = â†i â

†
j â
†
kâ
†
l âmânâoâp|Φ0〉

|Φ(3)
c 〉 = . . .

thus forming an ortogonal basis {Φi}.

The Hamiltonian in the many-body
basis {Φi} is diagonalized, yielding
the correlated ground state |Ψ〉:

Ψ =
∑
i

χi|Φi〉

The one-body reduced density matrix
is calculated:

〈i|ρ̂|j〉 = 〈Ψ|â†j âi|Ψ〉

Using the occupation numbers from
the density matrix, different physical
quantities can be calculated similarly
to how it is done for a BCS solution.

ukvk =
√
〈k|ρ̂|k〉(1− 〈k|ρ̂|k〉)

Figure 2.1: Main steps involved in obtaining results with HTDA.

The basis of single particle statesm used for the construction of the Slater determinants |Φn〉, is
obtained from the Hartree-Fock calculation. To describe the exact solution one has to consider
an infinite set of single particle states on the one hand, and on the other an infinite number
of particle-hole excitations have to be included in the HTDA wavefunction’s expansion. This
is obviously impossible and some simplifications have to be employed as to make the problem
tractable.

Firstly, not all possible excitations are taken, but only a limited number around the Fermi level.
Additionally, a smoothing factor is used to reduce stridency in the physical observables, which
might occur because of the abrupt changes in single particle energy. Secondly, a truncation is
enforced on the number of pair-hole excitations. It is expected that the expansion (2.34) will
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converge quickly enough, so excluding part of the terms would not cause much spuriousness to
the HTDA wavefunction [1].

The state (2.34) corresponds to an admixture of different n-particle configurations, thus it is
by construction an eigenstate of the proton number and neutron number operators.

Ẑ|Ψ〉 = Z|Ψ〉 N̂ |Ψ〉 = N |Ψ〉 (2.36)

The end solution of the method can be characterized by two principal values – the degree of
correlation and the correlation energy. The degree of correlation is most simply assessed by the
depopulation of the quasi-vacuum state |Φ0〉:

D = 1− χ2
0 (2.37)

while the correlation energy is straightforwardly defined as [6]:

Ecorr = 〈Ψ|Ĥ|Ψ〉 − 〈Φ0|Ĥ|Φ0〉 (2.38)

2.4.2 The Gogny force’s matrix element

Since the many-body matrix element is not and could not be made available in closed form, it
is obtained through Wick’s theorem, as it is usually done [15]:

b̂α1 b̂α2 b̂α3 b̂α4 b̂α5 . . . b̂αk = :b̂α1 b̂α2 b̂α3 b̂α4 b̂α5 . . . b̂αk :

+
∑
single

:b̂α1 b̂α2 b̂α3 b̂α4 b̂α5 . . . b̂αk :

+
∑

double

:b̂α1 b̂α2 b̂α3 b̂α4 b̂α5 . . . b̂αk :

+
∑
triple

:b̂α1 b̂α2 b̂α3 b̂α4 b̂α5 . . . b̂αk :

+
∑
...

: . . . :

(2.39)

where b̂αk is either a single particle fermionic creation or anihilation operator, and the sum-
mation is over all single, double, triple, etc. contractions’ normal products. That particular
expansion requires the values of at least some matrix elements in the Hartree-Fock basis, but
the number of terms is not that great, because the only nonzero contractions are of the type
shown (δij is the Kronecker symbol):

âiâ
†
j = δij (2.40)

13



Using a typical representation of the Gogny force’s central term [16]:

V̂Gogny =
∑
S,T,χ

[
Wχ + (−1)S+1Bχ − (−1)T+1Hχ − (−1)S+TMχ

]
P̂SP̂T V̂ (r,σ,τ)

=
∑
S,T,χ

Vχ(S, T )P̂SP̂T V̂ (r,σ,τ)
(2.41)

where P̂S and P̂T are the spin and isospin projection operators respectively, the matrix element
in the Hartree-Fock basis is given by (see appendix C):

〈ij|V̂Gogny|kl〉
∣∣∣∣
HF

=
∑
S,T,χ

∑
n,o,p,q

cincjockpclqVχ(S, T )G(S, T )〈no|V̂ (r)|pq〉
∣∣∣∣
HO

(2.42)

where cij are the known cylindrical harmonic oscillator basis expansion coefficients, G(S, T ) is
a rational factor induced from the spin-isospin projections and Vχ(S, T ) are the cooresponding
magnitudes. The explicit closed form of the spatial component of the matrix element is given
in [17]. Evidently, it does not depend on S and T and by manipulating the values of Vχ(S, T )

different channels could be selected and their influence explored.
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Chapter 3

Numerical methods

3.1 Calculation setup

For the calculation of the various physical quantities a code developed previously by Julien
Le Bloas in Fortran 95 was used. It included the whole procedure needed to obtain results
with the exception of incorporation of a Gogny residual interaction evaluated with the Direct
calculaton method. To proceed with the current work a number of modules and procedures were
written, so the aforementioned interaction is included into the computer program. Additionally,
an external C++ code was written and incorporated to provide the necessary subroutines for
dealing with the hash table storage (see appendix A).

Several parameters affect the values obtained, which are differently important for the current
work. While deformation parameters for the harmonic oscillator basis are of little consequence,
since the dependence of the moment of inertia of the ground state structure is explored, and
all the calculations are done usning the same input, the main quantum number N0 is of ut-
most importance as it should be large enough for the HO basis to be able to accomodate the
expansions used.

As it was already mentioned, the HTDA approach incorporates an inherent freedom to choose
the interaction to be different from the one used in solving the mean-field problem. In particular,
there are no constraints put on the way the reference Slater determinant is obtained. In this
study for the initial step of determining the particle-hole quasi-vacuum |Φ0〉 a Skyrme force
(SIII parametrization) was used [18], while the Gogny force’s central term was utilised as a
residual interaction for the construction of the HTDA Hamiltonian. The initial mean field
potential was chosen to be of the Woods-Saxon type and the calculations were performed with
N0 = 8, while preserving the parity symmetry.

The data is obtained by varying the renormalization factors for the Gogny force, thus giving
a multidimensional set of values for the different physical quantities. These perturbations in
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the factors were separately programmed into the existing code and the output data was further
processed by command line bash scripts written for that purpose alone.

3.2 Numerical evaluation

The two-body matrix elements’ evaluation was done using Gaussian quadratures of appropriate
type, for which purpose an additional module in Fortran was developed providing the special
functions required. The values were compared to already available figures obtained by Moshin-
sky expansion and it was shown that the direct calculation provides similar and consistent
results.

3.2.1 Moshinsky expansion

As it is shown in [19] the matrix element can be calculated using the Moshinsky transformation
between states with coordinates r1 and r2, and states with coordinates r and R such as:

r =
r1 − r2√

2
R =

r1 + r2√
2

(3.1)

Aplying the aforementioned transformation, the explicit expression for the matrix element could
be obtained (keeping the original notation):

〈12|e
− r

2

σ2

σ3
|34〉 = c̊0

∑
n

fn
∑
p

C(n, n′, p)A(p)

(
1√

1 + c2
zσ

2

)p+1
(∑

a,b

ga,bW c⊥σ
(a,b,a′,b′)

)
(3.2)

where the various coefficients and definitions are found in [19] exactly as written here.

3.2.2 Direct calculation

Alternatively to the use of the Moshinsky expansion, the matrix element could be evaluated
directly, as it is suggested in [17] and adapted as shown in appendix B. The closed form
obtained there is of the type:

〈ij|V̂ (r)|kl〉 = Nω

∞∫
−∞

∞∫
−∞

ωξ(ξ1, ξ2)e−ξ
2
1e−ξ

2
2dξ1dξ2︸ ︷︷ ︸

Vξ

∞∫
0

∞∫
0

ωη(η1, η2)ηΛik
1 η

Λjl
2 e−η1e−η2dη1dη2︸ ︷︷ ︸

Vη

(3.3)

where Nω is simply a normalization coefficient It is clear that the actual evaluation should be
done separately for the axial and radial parts, the hope initialy being to obtain faster method
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for the otherwise quite computationally heavy process. Acquiring the figures for both integrals
was done using a Gauss-Hermite quadrature for Vξ and the Gauss-Laguerre quadrature rule for
Vη, as shown in detail in appendix B.

3.3 Speed and accuracy

3.3.1 Matrix elements in the harmonic oscillator basis

The harmonic oscillator basis matrix elements match to a high degree for both methods –
Moshinsky expansion and Direct calculation. The aquired deviation:

∆ ≡ 〈ij|V̂ |kl〉
∣∣∣∣
Direct

− 〈ij|V̂ |kl〉
∣∣∣∣
Moshinsky

(3.4)

is less than 10−6 for a wide range of values, examples of which can be seen in table 3.1.

nz nr Λ 〈ij|V̂ |kl〉
i j k l i j k l i j k l Moshinsky Direct ∆

1 1 1 1 0 0 0 0 1 −1 1 −1 −157.946 883 90 −157.946 879 80 4.1× 10−6

1 1 0 0 0 0 0 0 1 −1 0 0 76.694 142 72 76.694 140 85 −1.9× 10−6

1 1 0 4 0 0 0 0 1 −1 0 0 −37.433 628 89 −37.433 627 87 1.0× 10−6

1 1 0 0 0 0 0 1 1 −1 0 0 −13.984 855 82 −13.984 855 48 3.4× 10−7

1 1 0 4 0 0 1 0 1 −1 0 0 6.825 865 50 6.825 865 31 −1.9× 10−7

0 0 0 0 0 0 0 0 0 0 0 0 −442.128 465 98 −442.128 456 66 9.3× 10−6

Table 3.1: Comparison between matrix elements in the harmonic oscillator basis calculated using the
direct evaluation method and the Moshinsky expansion formula.

3.3.2 Matrix elements in the Hartree-Fock basis

As expected, the small variations in the matrix elements magnitudes for the harmonic oscillator
basis are somewhat more pronounced in the Hartree-Fock basis due to the expansion coefficients
and subsequent summation. Additionally, a few truncations made in the Moshinsky expansion
implementation to accelerate the calculation by discarding some small contributions were im-
plicated for the relatively large differences observed in table 3.2. Nonetheless, the results show
that the matrix elements match to a satisfyingly high degree and usage of either method is
sensible.

3.3.3 Speed benchmarks

Both the direct evaluation and the Moshinsky expansion methods were benchmarked for speed,
so that a comparison could be made. After a dissapointing results for the Direct calculation
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〈ij|V̂ |kl〉
Moshinsky Direct ∆

−94.291 387 −94.303 113 −1.17× 10−2

−1.296 203 × 10−2 −1.613 543 × 10−2 −3.17× 10−3

−38.572 316 −38.576 820 −4.50× 10−3

−15.690 143 −15.700 959 −1.08× 10−2

−7.369 600 × 10−3 −1.015 904 × 10−2 −2.79× 10−3

0.000 000 −2.227 795 × 10−3 −2.23× 10−3

−14.120 919 −14.120 268 6.51× 10−4

Table 3.2: Comparison between matrix elements in the Hartree-Fock basis calculated using the direct
evaluation method and the Moshinsky expansion formula.

method, a decision was made to change the way matrix elements are calculated. While for
the Moshinsky calculations the matrix elements in the harmonic oscillator basis are calculated
every time they are needed, it was evident this is not optimal, as a single value could participate
in forming multiple matrix elements in the Hartree-Fock basis.

N0 tHash table tMoshinsky tHash table [min] tMoshinsky [min]

6 16 min 11.323 s 28 min 49.427 s 16.19 28.82
8 25 h 18 min 54.823 s 69 h 32 min 25.250 s 1518.91 4172.42

Table 3.3: Comparison between time needed to calculate the matrix elements in the Hartree-Fock
basis using both methods for two different bases.

To ensure that a matrix element in the HO basis is calculated only once – the first time
it is needed, a special scheme was developed. The factorization by axial and radial part of
the HO basis matrix elements was exploited, so the number of integral evaluations could be
kept at minimum. Each time a matrix element is needed, a lookup is done in a hash table (see
appendix A) and a value is retrieved, along with a status. If the status indicates that the matrix
element is not present in the hash table, it is calculated and inserted for further availability,
otherwise the recovered value is used. This process allowed for a significant increase in speed,
ultimately leading to a better performance compared to the originally employed method.

For reference, using two differently sized bases the superiority of the newly developed method is
clearly demonstrated. By increasing the basis, the ratio between the times required to complete
increases considerably favouring the hash map method, as can be seen in table 3.3.
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Chapter 4

Results & discussion

4.1 Parameters reference values

The results presented hereafter were obtained by varying the magnitudes’ renomalization factor
V(S, T ) for the different channels, while using the D1M Gogny parametrization (2.41) as a
reference [16].

Vχ(S, T ) = V(S, T )V D1M
χ (S, T ) (4.1)

It is inconvenient to work with the parameters Wχ, Bχ, Hχ and Mχ directly, so they could be
easily converted to reference values for V D1M

χ (S, T ) as shown in table 4.1.

V D1M
χ (S, T ) [MeV]

χ [fm] S = 0, T = 0 S = 1, T = 0 S = 0, T = 1 S = 1, T = 1

0.5 −53 954.74 −1929.26 261.90 4431.82
1.0 2611.91 −279.77 −125.47 −242.87

Table 4.1: Magnutudes for the different channels and ranges in the used parametrization.

4.2 The particle-hole quasi-vacuum properties

It has been already discussed that the HTDA many-body basis is built upon a reference Slater
determinant, obtained from a HF+BCS calculation. The iterative process is stopped when the
change of total energy for the solution drops under 10 eV. Convergence was established in 66
iterations for this particular case with total energy of E = −819.229 06 MeV.

The chemical potentials λ, the energy gaps ∆, mean-square radii 〈r̂2〉 and deformations 〈Q̂20〉,
for neutrons and protons respectively, are given in table 4.2.
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λ [MeV] ∆ [MeV] 〈r̂2〉
[
fm2
]
〈Q̂20〉

[
fm2
]

Neutrons −5.2755 0.8153 21.161 611.101
Protons −13.2323 1.0998 19.855 383.871

Table 4.2: Characteristic quantities for protons and neutrons for |Φ0〉.

The mean-square radius, quadrupole and octupole moments for the mean field solution in total
are as follows:

〈r̂2〉 = 20.655 fm2

〈Q̂20〉 = 994.972 fm2

〈Q̂40〉 = 0.4489 b2

4.3 Choice of channel

The isotope 98Sr was chosen deliberately, because it is far from the N = Z line, so the Fermi
levels for protons and neutrons are sufficiently far from one another, thus expecting little
to no correlation between them. Following from that expectation, only the T = 1 channels
were investigated and indirect inferences were made about the status of the proton-neutron
interactions.

As can be seen on figure 4.1, the depopulation of the ground state, being a measure of the
correlations included through HTDA, is significant for the S = 0, T = 1 channel, and conversely
relatively small for the S = 1, T = 1 channel. Only at the extreme, where the Gogny interaction
sees a tenfold increase, the quasi-vacuum’s role retreats to around 80% and the correlations
introduced in the S = 1, T = 1 channel stop being negligible. Normally it is not expected this
excessively strong pairing regime to be reached and if this proves to be true, it is relatively safe
to assume that the contribution of the S = 1, T = 1 channel is insignificant, therefore it is
possible only its counterpart to be considered. In light of this the S = 0, T = 1 channel was
expectedly chosen to be the main focus of further investigations.

4.4 Composition of the HTDA ground state

To acquire a sense of the propertries of the HTDA solution it is necessary to break down and
analyse the ground state structure. In figure 4.2 a separation by weight of the single, double
and triple pair excitations is given along with the reference Slater determinant contribution. It
shows that the single pair transfers dominate the ground state correlations, especially until the
saturation point is reached. With increase of the magnitude the triple pairs start to account for
more tangible amount of correlations, but not much compared to the single and double pairs.
Still they might promote additional double pair excitations, as observed in [5].
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Figure 4.1: Weight of the reference Slater determinant |Φ0〉 in the HTDA ground state expasion for
both the T = 1 channels, in respect to the renormalization coefficient V(S, T ).

The dependence of pairs’ populations on the pairing strength is following a pattern observed in
calculations made with the delta pairing [5], thus giving a reasonable credibility to the chosen
interaction.

Aditionally the constituents could be broken down by types of pairs as shown in figures 4.3a
and 4.3b, where components utilizing neutron-proton pairs are not plotted as their weight do
not contribute more than 1% of the total weight at any given strength, thus showing that the
choice of isotope was good and the neutron-proton interplay is kept at minimum.

It is noteworthy mentioning that the amount of proton-proton pairs is significantly larger in
comparison to their neutron-neutron counterparts for the single pair excitations. For two-pair
transfers the one proton-proton with one neutron-neutron type of double pairs is dominant. The
order by which pairs are observed might be explaned by the single-particle spectrum around
the Fermi level for the reference state |Φ0〉, which is shown in figure E.1, appendix E.

It is evident that the single pair excitations saturate around V(S, T ) = 4 and even their weight
declines slowly with increase of the magnitude. This effect is also observed in [5] and is at-
tributed to the ratio between the interaction matrix element, which increases with the increase
of V , and excitation energy for the double pairs becoming comparable to the same ratio for sin-
gle pairs’. This leads to second order corrections in perturbation theory, which drive the double
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(a) Single pairs’ decomposition by pair kind.
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(b) Double pairs’ decomposition by pair kind.

Figure 4.3: Breakdown of the one- and two-pair transfers’ types in respect to the magnitude factor.

pairs’ population, reaching in magnitude the first order corrections that mainly determine the
single pairs’ weight, hence causing the observed effect.
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4.5 The nucleus’ moment of inertia

For the calculation of the moment of inertia the cranking approximation formula was used [20]:

I =
∑
k,l

|〈k|j+|l〉|2

Ek + El
(ukvl − ulvk)2 +

1

2

∑
k,l

∣∣〈k|j+|l〉
∣∣2

Ek + El
(ukvl − ulvk)2 (4.2)

where the first sum is over states with Ωk > 0 and the second over those with Ωk = 1/2.

A plot of the nucleus’ moment of inertia is shown in figure 4.4 and it is evident that it decreases
with the increase of the renormalization factor. This is not unexpected behaviour, because the
amount of correlations increase with the increase of the interaction’s magnitude and reduce
the rigidity of the nuclear matter. While the moment of inertia apears to be quite sensitive
to the change of the factor V for lower strengths, for the larger values it seems to saturate
somewhat. Furthermore, it appears to roughly follow χ2

0 – the ground state weight implying
the two quantities are connected.
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Figure 4.4: The moment of inertia for different renormalization factors and its decomposition for
neutrons and protons. The experimentally obtained value is added for comparison, with dashed lines

representing its standard error.

To explore this suspected connection between the total amount of correlations in the HTDA
ground state and the moment of inertia their relation is presented in figure 4.5 including both
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Figure 4.5: Dependence of the moment of inertia on the amount of correlations for the two T = 1
channels.
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T = 1 channels.
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the S = 0, T = 1 and S = 1, T = 1 channels. It is evident that the moment of inertia and the
depopulation of the reference state correlate very well and almost linearly for both channels.
It is noteworthy that both figures use a different scale, reflecting the considerably smaller
amount of correlations produced by the S = 1, T = 1 channel for the same magnitudes of V .
Additionally the S = 1, T = 1 channel alone plainly is not able to generate enough correlations
to reduce the moment of inertia to its experimentally obtained value (see appendix D).

To compare the moment of inertia’s sensitivity to correlations induced by the two different
T = 1 channels the available results were plotted in their common range as shown in figure 4.6.
As is apparent from the slopes of the curves on the picture, even though the S = 1 channel
produces less correlations by absolute value it does contribute more strongly to the reduction
of the moment of inertia. This could be explained by inclusion of correlations beyond pairing.
S = 0, T = 1 alone is able to reproduce the experimental value for the moment of inertia,
but by utilising both channels simultaneously, one can expect reaching the expected value with
smaller V .
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Figure 4.7: Ground state decomposition for different moments of inertia.

It is of some interest how the composition of the ground state changes between different values
for, as well as how it behaves in the close proximity to a given value for the moment of inertia.
The rate of change could carry significant information about the behaviour of the ground state
around a value of interest, as shown in figure 4.7. For the experimental value of I, the ground
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state consists predominantly of single and double pairs, while the triple pairs’ contribution is
negligable. From the rate of change it is discernible that in this region the moment of inertia
is approximately equally sensitive to the single and double pairs’ population.
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Chapter 5

Outlook

The presented theoretical work treats the common problem of pairing and its role in determining
the moment of inertia for an even-even nucleus. The investigation is done in the context
of an explicitly particle number conserving approach - the highly truncated diagonalization
approximation (HTDA), for which a finite range interaction of a gaussian type was selected
as a viable candidate that should generate higher terms in the partial wave expansion. The
methods and problems faced in calculating the matrix elements of the interaction are presented
and emphasis is put to the consistency of the newly employed method in comparison to the
already tested Moshinsky expansion procedure. The results obtained are in agreement with
calculations done with a delta force and show the validity of the method selected.

The HTDA, being a purely microspcopic model, does provide a relatively good agreement with
the experimental value for the moment of inertia and supplies ample information about the
properties of the ground state wavefunction. It was shown that the S = 0, T = 1 channel
alone accounts for the experimental value of the moment of inertia, but if both T = 1 channels
are used it is expected the experimental value to be reached with a smaller renormalization
factor. The nucleus was chosen to be neutron rich, so the neutron-proton interactions are not
important and the choice was shown to be a good one, since the neutron-proton pairs of any
type (single, double, triple) don’t account for any tangible amount of correlations for any of
the strengths explored. The moment of inertia was shown to be almost linearly dependent on
the amount of correlations included through HTDA, but no discernable relation to the single,
double and triple pairs’ populations could be inferred.
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Appendix A

The hash table data structure

A.1 General description

A hash table (also called hash map) is a data structure which maps a set of keys to a set of
values. This is done by using a hash function to compute an index for an array of buckets, thus
allowing to find the required value.

Keys Hash function Buckets

〈ϕ6ϕ2|V̂ |ϕ3ϕ7〉

〈ϕ1ϕ2|V̂ |ϕ4ϕ9〉

〈ϕ9ϕ6|V̂ |ϕ1ϕ2〉
...

〈ϕ3ϕ4|V̂ |ϕ9ϕ8〉

00

01

02

03

10

11

12

{ϕ1, ϕ2, ϕ4, ϕ9}

{ϕ3, ϕ4, ϕ9, ϕ8}

{ϕ6, ϕ2, ϕ3, ϕ7}

{ϕ9, ϕ6, ϕ1, ϕ2}

Figure A.1: Example of mapping sets of wave functions to their respective matrix elements in a hash
map data structure

Ideally the hash function would be bijective, but in reality this is not the case and the mapping
is most commonly surjective, meaning that actually multiple keys could be mapped onto the
same value – hash collisions.

A hash table is on average extremely efficient for lookup-intensive applications performing as
shown in table A.1. For the problem considered, an implementation from the boost C++ library
was used by interfacing it with the existing Fortran code. This was realized by developing a
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Keys Hash function Buckets

〈ϕ6ϕ2|V̂ |ϕ3ϕ7〉

〈ϕ1ϕ2|V̂ |ϕ4ϕ9〉

〈ϕ9ϕ6|V̂ |ϕ1ϕ2〉
...

〈ϕ3ϕ4|V̂ |ϕ9ϕ8〉

00

01

02

03

10

11

12

{ϕ1, ϕ2, ϕ4, ϕ9}

{ϕ3, ϕ4, ϕ9, ϕ8}

{ϕ6, ϕ2, ϕ3, ϕ7}

{ϕ9, ϕ6, ϕ1, ϕ2}

{ϕ7, ϕ3, ϕ2, ϕ5}

Figure A.2: Example of a hash collision

separate C++ wrapper which provides the specializations of the library templates and exposes
them to the remainder of the program. Additionaly, it was assumed for simplicity that the
hash function is perfect and does not generate collisions.

Although hash tables and binary search trees provide the same functionality, there are some
subtle differences which make them suitable for distinctly different applications. Self-balancing
binary search trees provide significantly better worst case scenarios, but they also have larger
times on average (also known as amortized times) [21]. This would make them better suited in
situations where multiple collisions are expected and have to be resolved or when ordering of the
items is important. When ordering is not needed and hash collisions could be kept at minimum,
hash tables provide higher efficiency. In the current work, binary trees were discarded as a
viable option because of their amortized lookup and insertion times being significantly larger
than those of a hash map, as can be seen in table A.1.

Time complexity (in big O notation)
Hash map Self-balancing binary tree

Average Worst case Average Worst case
Search Amort. O(1) O(n) O(log n) O(log n)
Insert O(1) O(n) O(log n) O(log n)
Delete Amort. O(1) O(n) O(log n) O(log n)

Table A.1: Comparison between self-balancing search trees and hash maps in terms of time
complexities. [21]

A.2 Application

A hash map was employed to store the axial and radial parts of the gaussian matrix elements
in the harmonic oscillator basis (appendix B). Only spatial parts are considered as they are
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the computationally heavy elements of the evaluation. In total four tables are used – two
for the short and long ranged axial part, and two for the short and long ranged radial part.
Because of the factorization, the axial part of the matrix elements could be described only by
four quantum numbers – {nz(i), nz(j), nz(k), nz(l)}, while the radial part is fixed by its eight
quantum numbers – {nr(i), nr(j), nr(k), nr(l)} and {Λ(i),Λ(j),Λ(k),Λ(l)}, where i, j, k, l refer
to the corresponding wavefunctions [17]. As could be expected, those quantum numbers were
used as keys to map the respective values obtained for the matrix elements’ parts.

The hash function selected is from the family of binary polynomials – an implementation of
CRC32 [22]. Although most commonly used for error detection, in this case it was preferred
because of the good dispersion, support for variable length key and high speed, alongside with
a simple implementaton. It proved to be adequate for the problem considered and superiror to
the other algorithm examined – Fowler–Noll–Vo hashing (FNV-1a).
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Appendix B

Gaussian-type interaction matrix elements

B.1 Analytical formula

It is shown in [17] that the matrix elements of the Gaussian interaction, namely the central
term in the Gogny force, could be calculated by direct evaluation of two twofold integrals – one
coresponding to the axial dependence and the other to the radial. The matrix element in the
axially symmetric harmonic oscillator basis is given by:

〈ij|V̂ (r)|kl〉 = Nω

∞∫
0

∞∫
0

ωηη
Λik
1 η

Λjl
2 e−η1e−η2dη1dη2

∞∫
−∞

∞∫
−∞

ωξe
−ξ21e−ξ

2
2dξ1dξ2 (B.1)

Nω is a normalization coefficient and is given by:

Nω =
4

π

{ [
µ2
zµ

σ⊥+4
⊥ 2σz |Λ(i)|! |Λ(j)|! |Λ(k)|! |Λ(l)|!

]−1

nz(i)!nz(j)!nz(k)!nz(l)!C
nr(i)+|Λ(i)|
nr(i)

C
nr(j)+|Λ(j)|
nr(j)

C
nr(k)+|Λ(k)|
nr(k) C

nr(l)+|Λ(l)|
nr(l)

} 1
2

(B.2)

With Cn
k in (B.2) are denoted the binomial coefficients:

Cn
k ≡

(
n

k

)
(B.3)

The functions to be integrated are represented by:

ωη =Iλ

[
2

(
1− 1

µ⊥

)
√
η1η2

]
Li(η1)Lj(η2)Lk(η1)Ll(η2)

ηΛik
1 η

Λjl
2

(B.4)

ωξ =Hi

(
ξ2√

2
+

ξ1

µz
√

2

)
Hj

(
ξ2√

2
− ξ1

µz
√

2

)
Hk

(
ξ2√

2
+

ξ1

µz
√

2

)
Hl

(
ξ2√

2
− ξ1

µz
√

2

)
(B.5)
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Where the shorthand notations are employed:

µz =

(
1 +

2µ

β2
z

) 1
2

µ⊥ = 1 +
µ

β2
⊥

(B.6)

λ = Λ(k)− Λ(i) (B.7)

σ⊥ = |Λ(i)|+ |Λ(j)|+ |Λ(k)|+ |Λ(l)| (B.8)

σz =nz(i) + nz(j) + nz(k) + nz(l) (B.9)

And the parameters Λij and Λij are chosen such that Λij ∈ N, while keeping their proper ratio:

ηΛij

ηΛij
≡ η

1
2

[|Λ(i)|+|Λ(k)|] (B.10)

Then they have simple representations of the type:

Λij =

⌈
1

2
[|Λ(i)|+ |Λ(j)|]

⌉
(B.11)

Λij =Λij −
1

2
[|Λ(i)|+ |Λ(j)|] (B.12)

B.2 Numerical evaluation

A set of functions in Fortran were developed to facilitate the numerical evaluation of both
the axial and radial integrals. Not only the nodes at which functional values are required were
calculated, but the quadrature weights as well, up to a configured arbitrary order. Compensated
summations (namely the Kahan summation algorithm) are used throughout the code to ensure
that the numerical errors are kept minimal [23].

B.2.1 Axial part

For the axial integral a Gauss-Hermite quadrature was used [24]:

+∞∫
−∞

+∞∫
−∞

ωξ(ξ1, ξ2)e−ξ
2
1e−ξ

2
2dξ1dξ2 ≈

m∑
i=1

n∑
j=1

wi(m)wj(n)ωξ(ξ
(1)
i , ξ

(2)
j ) (B.13)

where ξ(1)
i is i-th root of the Hermite polynomial Hm(x), ξ(2)

j is j-th root of the Hermite poly-
nomial Hn(x) and wi(m), wj(n) are the weights respectively:

wi(n) =
2n−1n!

√
π

n2[Hn−1(xi)]2
where Hn(xi) = 0 (B.14)
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The order of the quadrature rule is automatically adjusted depending on the Hermite polyno-
mials’ order in ωξ, so that the integration is analytically exact.

The roots and weights were checked against Maple and a standard set of mathematical tables
[24]. The values match to a scale of 10−12 accross the tested orders range, which spanned
from 0 to 10.

B.2.2 Radial part

For the radial part a generalized Gauss-Laguerre quadrature was used [25,26]:

∞∫
0

∞∫
0

ωη(η1, η2)ηΛik
1 η

Λjl
2 e−η1e−η2dη1dη2 ≈

m∑
p=1

n∑
q=1

wi(p,Λik)wj(q,Λjl)ωη(η
(1)
i , η

(2)
j ) (B.15)

where η(1)
i is i-th root of the associated Laguerre polynomial LΛik

m (x), η(2)
j is j-th root of the

associated Laguerre polynomial LΛjl
n (x) and wi(m,Λik), wj(n,Λjl) are the weights respectively:

wi(n,Λ) =

(
n+Λ

Λ

)
Λ!

(n+ 1)2

xi[
LΛ
n+1(xi)

]2 where LΛ
n(xi) = 0 (B.16)

Because the function ωη cannot be represented by a polynomial, in contrast to ωξ, in this case
the integration is analytically, as well as numerically approximate. For practical reasons and
because the modified Bessel function contained in ωη introduces somewhat unwanted behaviour,
large order quadrature rules are used (n > 30) to keep accuracy at a satisfactory level.

An extensive accuracy benchmark for the weights and roots was done using both Maple and
mathematical tables [25,26]. Even though deviations from the expected value were several hun-
dred to thousand times larger than those observed for the axial integrals, they were consistently
below 10−8, even for the highest of the tested orders. This provided enough confidence in the
numerical results obtained with the method.
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Appendix C

The Gogny force matrix element

C.1 In the harmonic oscillator basis

Using the given parametrisation of the cenral term of the Gogny force:

V̂Gogny =
∑
S,T,χ

[
Wχ + (−1)S+1Bχ − (−1)T+1Hχ − (−1)S+TMχ

]
P̂SP̂T V̂ (r,σ,τ)

=
∑
S,T,χ

Vχ(S, T )P̂SP̂T V̂ (r,σ,τ)
(C.1)

Where the projection operators are given through the spin and isospin exchange operators by
the equations:

P̂S =
1

2

[
1− (−1)SP̂σ

]
P̂T =

1

2

[
1− (−1)T P̂τ

]
(C.2)

The spatial, spin and isospin components are separable in the potential V̂ (r,σ,τ):

V̂ (r,σ,τ) = V̂ (r)V̂ (σ)V̂ (τ) (C.3)

and additionally they commute freely with one another:[
V̂ (r), V̂ (σ)

]
= 0 (C.4)[

V̂ (r), V̂ (τ)
]

= 0 (C.5)[
V̂ (σ), V̂ (τ)

]
= 0 (C.6)

Having in mind that:

〈ij|V̂ (σ)|kl〉 = δσiσkδσjσl (C.7)

〈ij|V̂ (τ)|kl〉 = δτiτkδτjτl (C.8)
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it is easy to calculate the projected spin and isospin parts:

G(S) =〈ij|P̂SV̂ (σ)|kl〉 =
1

2
〈ij|

[
1− (−1)SP̂σ

]
V̂ (σ)|kl〉

=
1

2

[
δσiσkδσjσl + (−1)S+1δσiσlδσjσk

] (C.9)

G(Т) =〈ij|P̂ТV̂ (τ)|kl〉 =
1

2
〈ij|

[
1− (−1)T P̂τ

]
V̂ (τ)|kl〉

=
1

2

[
δτiτkδτjτl + (−1)T+1δτiτlδτjτk

] (C.10)

or rewriting to obtain a single spin-isospin projection:

G(S, T ) =〈ij|P̂SP̂ТV̂ (σ)V̂ (τ)|kl〉 = 〈ij|P̂SV̂ (σ)|kl〉︸ ︷︷ ︸
G(S)

〈ij|P̂T V̂ (τ)|kl〉︸ ︷︷ ︸
G(T )

=

=G(S)G(T ) =
1

4

[
δσiσkδσjσl + (−1)S+1δσiσlδσjσk

] [
δτiτkδτjτl + (−1)T+1δτiτlδτjτk

] (C.11)

The matrix elements are obtained straightforwardly from (C.1) by applying the projection
operators, thus separating the spin-isospin part and then substituting from (C.11):

〈ij|V̂Gogny|kl〉 =
∑
S,T,χ

Vχ(S, T )〈ij|P̂SP̂Т V̂ (σ)V̂ (τ)V̂ (r)︸ ︷︷ ︸
V̂ (r,σ,τ)

|kl〉

=〈ij|V̂ (r)|kl〉
∑
S,T,χ

Vχ(S, T )G(S, T )
(C.12)

The possible problems connected to and numerical methods used for calculating the spatial
part of the matrix element – 〈ij|V̂ (r)|kl〉 are thoroughly considered in appendix B.

C.2 In the Hartree-Fock basis

The matrix element in the Hartree-Fock basis is simply calculated by using the known expansion
coefficients cij:

〈ij|V̂ |kl〉
∣∣∣∣
HF

=
∑
S,T,χ

∑
n,o,p,q

cincjockpclqVχ(S, T )G(S, T )〈no|V̂ (r)|pq〉
∣∣∣∣
HO

(C.13)

and is then antisymmetrized:

〈ij|V̂ |k̃l〉 = 〈ij|V̂ |kl〉 − 〈ij|V̂ |lk〉 (C.14)
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Appendix D

The 98Sr moment of inertia’s experimental
value

To obtain the moment of inertia’s experimental value, the well known semiclassical formula is
used [11]:

E(J)− E(0) =
1

2I
J(J + 1) (D.1)

By plotting the dependence and performing a linear fit, the slope is determined (figure D.1),
from which the moment of inertia is straightforwardly calculated.
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Figure D.1: Change of the rotational band energy with increase of the total angular momentum.
Data was taken from the ENSDF database [27].
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Appendix E

Single particle spectra
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(a) Neutrons single particle spectrum.
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Figure E.1: Single particle spectra (the purple dashed line is the fermi level).
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