

Ядрено-структурни експерименти с радиоактивни снопове. Ядрени моменти и вероятности за преход. Георги Георгиев, СSNSM, Орсе

Physics motivation

- Why do we need high-precision measurements of nuclear moment?
- *Transition probability studies for nuclei far from stability why?*
- Time Dependent Recoil In Vacuum (TDRIV) on H-like ions
 - *Experimental approach for stable ions.* What are the peculiarities for **RIB studies**?
 - g factor of ²⁴Mg revisited. **Prove of principle and physics results**
- Coulomb excitation studies in the A~100 region
 - Sudden onset of deformation at N=60. What is the contribution of the proton orbitals odd-mass Rb nuclei
 - *Experimental results on* ⁹⁷⁻⁹⁹*Rb below and above N*=60
- Conclusions and perspectives

Physics motivation

- Nuclear moments and transition probabilities extremely sensitive probes towards the structure of the nuclei:
 - g factors considered as fingerprints of the single-particle properties
 - transition probabilities sensitivity towards the collective properties of the nuclei
- g factors in self-conjugated nuclei
 - \circ expected to be equal to 0.5
 - shell-model calculations a sizeable departure from g=0.5 (up to 10%) for 2⁺ states in ²⁰Ne ³⁶Ar (W. A. Richter, S. Mkhize, and B. A. Brown, Phys. Rev. C 78, 064302 (2008))

- transition probabilities
 - o giving an insight to the transitional matrix elements
 - indications for structure modifications, e.g. single-particle-like towards collective properties

Time Dependent Recoil In Vacuum on H-like ions

 \bullet \bullet \bullet

The RIB approach

G. Georgiev

Electron-nuclear spin interaction in vacuum

– single frequency for J=1/2

Time Dependent Recoil In Vacuum (stable beams)

magnetic field for H-like ions – can be calculated from first principles!
 pure H-like charge state could not be achieved (~15 %)

Г. Георгиев

TDRIV – radioactive beam geometry

A.E. Stuchbery et al., Phys. Rev. C71, 047302 (2005).

The same oscillation frequency can be found even after the reset foil (with some damping of the amplitude due to the hard-core attenuation)

Г. Георгиев

The ALTO facility in Orsay

	<u>2011</u>	2012	2013	2014	2015
Users	~120	~240	200	135	246
Beam-time	1752 h	3600 h	2712 h	2232 h	3816 h
	219 UT	450 UT	339 UT	279 UT	477 UT

Г. Георгиев

ALTO – experimental areas

Г. Георгиев

TDRIV experimental setup @ ALTO

Plastic scintillator

beam: ²⁴Mg @120 MeV (5 MeV/u) target: 2.4 mg/cm² ⁹³Nb reset Foil: 1.7 mg/cm² ¹⁹⁷Au

Orsay Universal Plunger System

✓13 HPGe @ θ= 46.5°, 72.1°, 85.8°, 94.2°,
108.0°, 133.6°, 157.6°

✓ 8-fold segmented annular detector

✓ Orsay Universal Plunger System (OUPS)

Г. Георгиев

Experimental results

Г. Георгиев

Transition Probability Studies with Radioactive Ion Beams

$\bullet \bullet \bullet$

Coulomb excitation of ⁹³⁻⁹⁹Rb at ISOLDE, CERN

Sudden onset of deformation at N=60

- region of sudden onset of deformation between Z=36 (Kr) and Z=42 (Mo)
- charge radii sudden increase at N=60 from Rb on

 \rightarrow points to a specific importance of the π - ν interaction

Г. Георгиев

What about Rb's?

Ground-state nuclear moment measurements of ⁹⁷Rb

K	I^{π}	Q_s [eb]	$\mu \left[\mu_N \right]$	Orbital
3/2	3/2-	0.6	1.9	$\pi \frac{3}{2}$ [301]
3/2	3/2+	0.6	1.99	$\pi \frac{3}{2}^{+}$ [431]
3/2	3/2-	0.6	0.7	$\pi \frac{\bar{3}}{2} [312]$
Experimental Values		0.6	1.84	-

- ✓ Sudden onset of deformation at ⁹⁷Rb
- Ground-state magnetic moment measurement – favors π3/2⁺[431] but does not exclude π3/2⁻[301]

Coulex with Miniball @ ISOLDE

Г. Георгиев

Coulex of ⁹⁷Rb and ⁹⁹Rb

What the theory sais?

B(M1)/B(E2) values (from exp. intensities)

B(E2) values (part.-rotor model)

Fine interplay between well defined **spherical** and **well-deformed** shell gaps at Z=38 might be among the main reasons for the **sudden onset of deformation** in the neutron-rich A~100 nuclei.

C. Sotty et al., PRL 115 172501 (2015)

⁹⁷Rb – the corner stone of the A~100 deformed region

 ⁹⁷Rb – the "South-West" corner stone of the region of deformation around A~100

 Completely independent structures (spherical and well deformed) are exchanging their relative positions right at N=60

Conclusions and perspectives

- High-accuracy experimental results on nuclear moments are needed for testing the nuclear theories
- TDRIV (on H-like ions) can provide high accuracy, model independent, measurements of short-lived excited states using RIB
- Transition probabilities and nuclear moment studies are complementary and indispensable for the correct understanding of the nuclear structure far from stability

Collaborations

TDRIV:

- A. Kusoglu, A. Goasduff, J. Ljungvall, C. Sotty CSNSM, Orsay, France
- **A.E. Stuchbery -** ANU, Canberra, **Australia**
- o **D. Balabanski -** ELI-NP, IFIN HH, Magurele, **Romania**
- L. Atanasova, P. Detistov INRNE, BAS, Sofia, Bulgaria
- K. Gladnishki, M. Danchev University of Sofia, Bulgaria
- I. Matea, I. Stefan, D. Verney, D. Yordanov IPN, Orsay, France
- **D. Radeck -** IKP, Cologne, **Germany**

Coulex:

- C. Sotty CSNSM, Orsay, France
- o **D. Balabanski -** ELI-NP, IFIN HH, Magurele, **Romania**
- A. Stuchbery Department of Nuclear Physics, ANU, Canberra, Australia
- M. Zielinska CEA, Saclay, France
- A. Blazhev, K. Geibel, P. Reiter, M. Seidlitz, B. Siebeck, N. Warr INP, Cologne, Germany
- J.M. Daugas, P. Morel, R. Chevrier CEA, DAM, DIF, Arpajon, France
- S. Das Gupsta Dipartimento di Fisica, Universita di Camerino, Italy
- N. Bree, J. Diriken IKS, KU Leuven, Belgium
- **L. Gafney -** Oliver Lodge Laboratory, University of Liverpool, **UK**
- K. Hadynska-Klek, P. Napiorkowski HIL, Warsaw University, Warsaw, Poland
- **F. G. Kondev -** NED, Argonne National Laboratory, **USA**
- **T. Kroell, M. Scheck -** Technische Universitat Darmstadt, Darmstadt, **Germany**
- **G. Simpson -** LPSC, Grenoble, **France**
- J. Pakarinen, H. Törnqvist, F. Wenander ISOLDE, CERN, Geneva, Switzerland and REX-ISOLDE and Miniball's collaborators

Г. Георгиев

ISOLDE – принцип на действие

Г. Георгиев

Feasability

²⁶Mg – setup testing:

- 5 x 10⁷ pps
- 11% TIGRESS efficiency
- 2 days measurement
- 3% g-factor accuracy

²⁸Mg – RIB measurement

- 1 x 10⁶ pps
- 14%TIGRESS efficiency
- 8 days measurement
- < <u>5% accuracy</u>

Experimental spectra

Г. Георгиев

Perspectives

- First RIB study?
 - \circ e.g. ²⁸Mg case:
 - 10⁶ pps

Sudden onset of deformation at N=60

P. Campbell, I.D. Moore, M.R. Pearson Progress in Particle and Nuclear Physics 86 (2016) 127–180

The n-rich nuclei between Z=37 and Z=41 present at N=60 one of the most impressive deformation change in the nuclear chart
 Localized within the Z degree of freedom

→ Point to a specific π – ν interaction

Г. Георгиев

b